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ABSTRACT
We propose a novel framework to estimate room layouts
from multiple panoramas taken inside the same room with
registration. Our solution consists of the following major
components. First, we propose a boxification line predic-
tion network that can predict boxification lines for each
panorama in the same room. Second, we propose a graph-
cut based binary segmentation that produces room layouts
with sharp corners and straight walls. Third, we also anno-
tated one multi-view consistent layout dataset for this new
layout prediction framework. Our quantitative results show
an improvement over single-view room layout estimation al-
gorithms.
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1. INTRODUCTION
The problem of indoor layout reconstruction is currently

one of the popular issues in computer vision. The goal of
indoor layout reconstruction is to predict the information
including walls, ceilings, floors, etc., for the indoor space.
Such information can be used for many different applica-
tions, such as creating VR or AR scenes, indoor navigation,
floor plan estimation, etc.
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Figure 1: Our framework takes several panoramas as input,
we can thus output one single 3D layout that is consistent
among different views.

Many related jobs choose to use a single panorama to
reconstruct the indoor layout, and there are many bene-
fits to use a single panorama. One of the benefits is that
panoramic images have more information. This feature has
many advantages in terms of visualizing the results and the
reconstruction problem itself.

However, using only a single panoramic image for recon-
struction still encounters many problems. First, it is often
impossible to see the full picture of the indoor layout from
a single view because of the occlusion of the walls in some
complex indoor scenes. Second, it is difficult to handle the
large indoor scene, in which the distant wall usually only oc-
cupies a small area on the panoramic image, so it is difficult
to reconstruct the entire details.

To achieve more accurate reconstruction, we use multiple
views for layout reconstruction. There are two challenges in
using multi-view panoramic images for Layout reconstruc-
tion: 1) how to estimate the camera extrinsic between multi-
ple panoramic images; 2) how to integrate information from
multiple panoramas. The main issue discussed in this pa-
per is the second question. Assuming that we can obtain
camera extrinsic from multiple panoramas, how to correctly



combine the information from each perspective to predict an
accurate indoor layout? A direct integration method is to
perform single-view predictions separately from each view
and then align these single-view prediction results through
camera extrinsic, and then perform a simple shape overlay.
However, the disadvantage of using this method is that the
prediction error comes from every single view are also accu-
mulated, so the final results may not be more accurate than
the single-view prediction.

We propose an algorithm that can better integrate the
predictions from multiple panoramas and generates an ac-
curate multi-view layout prediction. Our method is inspired
by the post-processing in DuLa-Net [11] that predicts the
layout from the ceiling view, and then derives the rectangu-
lar dividing lines from the layout segmentation, called boxi-
fication lines, and uses boxification lines on the ceiling view.
We then divide the space into multiple small blocks, and
then calculate the coverage of each grid on the ceiling view-
ing angle by layout segmentation, and finally pick out the
grids with sufficient coverage. We converted this method
to a multi-view scenario, redesigned the entire problem into
a graph-cut problem, and added additional image feature
information to remove the overlay error.

To verify the effectiveness of our method, an accurate
dataset is needed. This dataset must have a consistent and
accurate layout among different views. However, most of the
current datasets are labeled on a single view. To this end,
we have developed a set of multi-view indoor layout labeling
tools. This system allows users to switch between different
views to edit the same indoor layout. It can annotate ac-
curate and consistent indoor layouts with multiple views in
the complex indoor environment within minutes. Using this
annotation tool, we have annotated 535 rooms on the Mat-
terport3D [2] dataset, which can be used for verification or
other related purposes. We tested our method on the multi-
view dataset, showing that the performance of our proposed
method outperforms the single view methods.

In summary, our contributions are as follows:

• We propose a framework that can reconstruct the lay-
out from multiple panoramas.

• We annotated one multi-view consistent layout dataset
for this new layout prediction framework from the an-
notation tool developed by ourselves.

• Our quantitative results show an improvement over
single-view room layout estimation algorithms on our
newly proposed multi-view dataset.

2. RELATED WORK

Perspective images layout reconstruction.
Using perspective images (compared to panoramic pho-

tos) for layout reconstruction has always been an important
research problem in computer vision. Lee et al. [5] used
deep learning to predict several layout corner distributions
and positions on the image to reconstruct the indoor lay-
out. Dasgupta et al. [3] proposed to use deep learning to
predict which part of the layout each pixel belongs to, such
as wall, ceiling, etc., and then find the most suitable pat-
tern through optimization methods. Because of the limited
viewing area of a single view, some related studies used mul-
tiple perspective images to reconstruct the multi-view indoor

layout. Jenkins et al. [4] used deep learning to predict the
position of the plane from multiple images which were clus-
tered and analyzed to find the indoor layout without using
the Manhattan hypothesis.

Single-view panorama layout reconstruction.
In recent years, many studies use deep learning for lay-

out prediction on a single panoramic image. In addition
to using panoramic images, Zou et al. [13] also added line
features on panoramic images to assist in layout prediction.
They use two branch networks to predict the indoor lay-
out. The first branch network predicts the position of the
ceiling and floor in the panoramic image, and the second
branch network predicts the position of the corner on the
panoramic image. Finally, they obtain the 3D indoor layout
by a post-processing. Yang et al. [11] chose to obtain ad-
ditional information from the ceiling view images, dividing
the network into two branches, and predicting the difference
between the panoramic view and the ceiling view images
on the two branches. Two layout segmentation maps, and
then combine the two segmentation maps to generate the
final prediction. The advantage of this method is that a
lot of unnecessary information, such as furniture, can be
subtracted from the ceiling view images, so they could gen-
erate a more complete indoor layout shape. Sun et al. [10]
proposed a one-dimensional representation for indoor lay-
out. They trained the network to learn how to predict this
one-dimensional representation through a panoramic image
and then converted the one-dimensional representation into
the indoor layout through post-processing. This method re-
duces the spatial complexity on the one hand compared to
the method of directly predicting the entire panoramic im-
age, on the other hand, it also makes the network easier to
train.

Multi-view panorama layout reconstruction.
Many researches use multiple panoramas to reconstruct

the indoor environment, such approaches can handle much
more complex or large scenes. Cabral et al. [1] use Multi-
View Stereo to predict point cloud from multiple panoramas,
the point cloud is then projected to top-down view and dis-
cretized as a grid, find a closed path on the grid to forms
a layout. Such an approach highly relies on the quality of
point cloud and the camera position of panoramas can be
improved by adding external point cloud. Pintore et al. [8]
proposed to predict the superpixel segmentation on every
single view, labeling the superpixel as floor, ceiling, or wall,
predicts the height of each superpixel, then transform the
superpixel to a common coordinate space, using the over-
lapping of superpixel from different views to estimate the
shape of layout, Pintore et al. [7] extents this approach with
object detection, which provide more cues of the interior ob-
ject such as furniture, to get a more accurate boundary of
the indoor layout. Another approach proposed by Pintore
et al. [9] is to mix the corner points of multiple single view
layout, the single view layout is overlapped, then the inter-
section of walls are detected to create new corner points, and
the closed corner points are merged. Through this process
multiple single view layouts are integrated into one multi-
view layout.

3. METHOD



Figure 2: Overview.This system uses multiple aligned panoramas as input. First, we extract three different features from the
panoramas of different views through deep learning. These features will be converted to ceiling view images. We use these
features to build a graph, we optimize this graph to select vertices that are suitable for the layout and calculate the 2D layout
from these vertices. We then convert the 2D layout into a 3D layout through the predicted height from a single view.

3.1 Overview
Our goal is to reconstruct a layout with Manhattan’s as-

sumption which implies all walls, ceilings, and floors are
parallel to the three main coordinate axes. We first apply
the same pre-processing as DuLa-Net[11], where the pre-
processing can ensure that the panoramic image meets the
Manhattan assumption, and then we take 160 degrees FoV,
resampling the upper half of the panoramic image to ob-
tain the ceiling view image that helps to remove informa-
tion that does not belong to the layout, such as furniture,
etc. In this paper, our methods are all operated from the
ceiling view images. We first obtain segmentation, boxifica-
tion, and image features from a single view. These data are
all obtained or converted to the ceiling perspective after the
ceiling view image is acquired. We obtain these three types
of information for each view. After obtaining the single-view
information, we separately convert the information of each
view through the camera extrinsic matrix of each view and
convert all the information to a common coordinate system
for alignment. Next, we treat this process as a graph-cut
optimization to obtain the final 2D layout. Finally, we add
a predicted height to this 2D layout to output the 3D layout.

3.2 Single-view feature extraction

Segmentation and Image feature.
Segmentation refers to finding the pixels belonging to the

ceiling from the ceiling view image. In the Manhattan lay-
out, finding the shape of the ceiling means finding the lay-
out. We use a state-of-the-art single-view layout prediction
method, HorizonNet[10], to obtain single view layout pre-
diction, and then convert the layout into ceiling view seg-
mentation. In addition, in a single view, we will also obtain
additional image features (LCNN[12]) to help us predict a
more accurate layout.

Boxification line.

We use a deep neural network to predict boxification lines
in a single view. Boxification lines can cut the ceiling into
multiple squares aligned with the horizontal and vertical
axes. We select the appropriate squares to form the best
layout, just like DuLaNet[11] mentioned in their paper. To
be able to predict accurate boxification, we designed a deep
neural network architecture to help us make boxification line
predictions. The boxification lines representation we use is
similar to HorizonNet[10]. For each element on the vector,
we calculate the distance d from the element to the nearest
boxification lines and then calculate the value of the element
cd, where c Is a smoothing constant. In the experiment, we
tried 0.96, 0.8, 0.7, 0.6, etc., and finally found that c taking
0.8 would have the best effect.

We design a neural network to predict the boxification
lines. This network takes the ceiling view image as input
and uses ResNet-50 to extract features. We follow feature
pyramid network[6], by upsampling the high-level features
in ResNet and concat them with the low-level features, we
can mix the features at various scales. The 128x128 feature
map is extracted through this modified ResNet-50, and then
the feature map is average pooled in the two dimensions of
width and height. This step is to distinguish the horizontal
and vertical boxification information. After this network, we
obtain these two one-dimensional vectors containing infor-
mation in the horizontal and vertical directions respectively.
Then, we refer to the decoder design in HorizonNet[10] and
connect a fully connected layer for the features of each row
on the one-dimensional vector. The one-dimensional vector
in the horizontal direction or the one-dimensional vector in
the vertical direction of this fully connected layer has com-
mon weights. Through this fully connected layer, we can
start from the horizontal and vertical directions. We use
binary cross entropy as our model’s training loss.

3.3 Graph optimization
After we extract the LCNN line feature of the ceiling view

images, we then add the line feature of the ceiling view im-



Table 1: Ablation Study Result. We replaced some components in our approach and compare the performance. The result
shows our approach has the highest accuracy than other combinations of the method.

Boxification Prediction Graph Optimization MatterportLayout v2

HorizonNet[10] Ours Coverage Only Graph Cut 2D IoU ↑ 3D IoU ↑
X X 0.8427 0.8122
X X 0.8540 0.8221

X X 0.8494 0.8198
X X 0.8676 0.8360

ages to the graph. We first use the boxification line to di-
vide our ceiling view images into many vertices and edges.
The edge represents the boundary between the regions rep-
resented by the vertices, and the line segment information
represents the boundary information. We can obtain the
boundary weight of this boundary by detecting the line seg-
ment information around the boundary represented by the
edge. The boundary weight represents the possibility that
a boundary is a true boundary, and when we calculate the
boundary weight, we only consider the line segments that
are in the same direction as the boundary.

We calculate the boundary weight Wboundary by the fol-
lowing method: First, we define an influence distance 2D
around the boundary, all line segments outside this distance
will not affect the result, and then we remove the line seg-
ment beyond the boundary. Then, we calculate the distance
d from the midpoint of the line segment to the boundary, as
well as the length of the line segment projected to the bound-
ary l1 and the length of the rest of the boundary l2.Fig 3
demonstrates an example of this process. Then, we calculate
the boundary weight as follows:

Wboundary = (1− d

D
) ∗ l1

(l1 + l2)
(1)

For the weight of each vertex, we define it as the ratio of
segmentation to the area represented by the vertex. And
for the vertex area where the camera is, we set its weight
to 1000. After passing the Ford-Fulkerson algorithm, we
get the min-cut on the map, and divide the map into two
parts, the inside and the outside of the layout. Usually,
the vertices in this layout will be connected, but in rare
cases(less than 2%), these vertices may be divided into more
than two connected graphs, then we will pick one of the
largest areas as the final output.

After we have selected the vertices in the layout, we can
connect the areas represented by the selected vertices to pre-
dict the shape of the integrated layout. After adding a height
to the layout as input, the 2D layout can be converted into
a 3D layout. In our experiment, we averaged the predicted
height of the single-view method to obtain the height of the
entire room to predict the 3D layout.

4. EXPERIMENTS

4.1 Dataset
To verify the effect of our method, an accurate dataset

is needed. This dataset must have a consistent and accu-
rate layout among different views. However, most of the

Figure 3: An example of boundary weight calculation. The
image on top-left is the ceiling view image, the green lines
in the image line segments predicted by LCNN, and the red
lines are boxification line segments, we remove the unnec-
essary part of the image line segment(denoted as the grey
line), then use the rest to calculate a boundary weight.

current datasets are labeled from a single view. Such data
is accurate enough in a single viewing angle, but in multi-
ple viewing angles, it is often not accurate enough in other
viewing angles due to occlusion or insufficient resolution.

To be able to quickly generate consistent and accurate
multi-view layout data, we have developed a multi-view in-
door layout labeling tool. This system allows users to switch
between multiple viewing angles to edit the same indoor
layout, allowing users to mark accurate and consistent in-
door layouts within a few minutes. We annotated a new
dataset called MatterportLayoutv2 which consist of total
of 535 rooms on the Matterport3D[2] dataset and a total
of 2340 panoramic images. These multi-view indoor layouts
can be used for verification or other related purposes. We
used part of the data when training the network. We used
294 rooms with a total of 1213 views as the training set, and
141 rooms with a total of 582 views were used as the test
set and 35 rooms with a total of 164 views were used as the
validation set.

4.2 Quantitative Layout Estimation Evaluation
We compare our method with the current state-of-the-art

single-view layout prediction method HorizonNet[10] and di-
rectly use its predicted layout for simple integration. We cal-



Figure 4: Results from left column to right column: Our 3D layout results, Union of HorizonNet [10], Thresholding on
coverage, Our 2D layout results. The blue lines are the predicted layout and the yellow area is ground truth.

Table 2: Layout Prediction Accuracy. We compare our
multi-view layout reconstruction with other baseline

Method
MatterportLayout v2

2D IoU ↑ 3D IoU ↑
HorizonNet [10] 0.8045 0.7753
Union of HorizonNet [10] 0.8079 0.7786
Thresholding on coverage 0.8282 0.7990
Our method 0.8676 0.8360

culate the 2D IoU and 3D IoU between the predicted result
and the ground truth. For a fair comparison, we also train
HorizonNet[10] on our Matterportlayoutv2 dataset, and the
comparison result is shown in Table 2. Among them, we
compared three kinds of baselines. HorizonNet[10] refers to
direct prediction on a single perspective and compares it
with ground truth. Union of HorizonNet [10] refers to the
comparison through simple layout unions, while Threshold-
ing on coverage simply selects the vertex through the cov-
erage of each vertex. If the coverage of the vertex is > 0.5,
the vertex is selected as a part of the layout.

4.3 Ablation Study
To evaluate the several methods we proposed: single-view

boxification prediction, graph optimization, we set up sev-
eral ablation studies. We replaced the single-view boxifica-

tion line prediction with boxification line extracted from the
layout predicted by HorizonNet[10], and only use coverage >
0.5 for vertex selection. We test the effect of adding each
method on layout reconstruction accuracy. In Table 1, it
shows that adding our boxification line or using Graph Cut
can improve the overall accuracy. Similarly, using two meth-
ods at the same time can further improve the accuracy. In
summary, the ablation study shows that the methods we
proposed have a positive effect.

4.4 Qualitatively Layout Estimation Compar-
ison

Figure 4 shows the comparison of our method with the 
different methods in Table 2 and the visual results of the 
large or occluded layout. The indoor layout predicted by 
our method is the best, showing that our process can handle 
this complex and large indoor layout well.

5. CONCLUSION
In this paper, we propose an algorithm that can predict 

the 3D layout from multiple panoramas taken in the same 
room. Our proposed algorithm can deal with complex large-
scale layouts very well. Because of the occlusion problem 
and resolution limitation, it is impossible to reconstruct in-
door details. By combining information from multiple im-
ages, we can produce a more accurate prediction of this 
large-scale layout than a single image.
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