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ADDITIONAL MATERIAL

Patch graph editing operations.We formulate two kinds of op-

erations - one that works on a 4-sided patch such that the oppo-

site sides have the same length and the other works on a 3-sided

patch such that all sides have the same length (see Fig. 13). Here a

side means a consecutive sequence of patch boundary half-edges

between two vertices with corner indices not equal to 6. We param-

eterize a zigzag as Za,b,d,x , a and b are the corner indices of the

two vertices in counter-clockwise order, d is the number of edges

between the first vertex and the closest vertex with a non-6 corner

index in clock-wise order, and x is the number of edges between the

two vertices. (a, b) is either (5,7) or (7,5), d is a non-negative integer

number, and d is a positive integer number.

For a 4-sided patch, zigzags are introduced in pairs. The two

zigzags of a pair appear on the opposite sides of the patch and they

must have the same d and x parameters. For two zig-zag pairs on

the two sets of opposite sides to appear at the same time, denoting

the first two parameters of the first pair of zigzags as (a1, b1), (a2, b2)

and for the second pair of zigzags as (a3, b3), (a4, b4), the following

condition ensures that the resulting patch boundary is still feasible

to be tessellated with a regular hybrid mesh: a1 = a2 = a3 = a4.

For a 3-sided patch, zigzags are introduced in triples. A triple of

zigzags, Za1,b1,d1,x1
, Za2,b2,d2,x2

, and Za3,b3,d3,x3
, can be introduced

if one of the two following conditions is met: 1)a1 = a2 = a3 = 5 and

d1 +d2 +d3 = 2L− 2, or 2) a1 = a2 = a3 = 7 and d1 +d2 +d3 = L− 1.

Extension to Equation 11.
The discretization of edges in the surface partition graph structure

into both 2-edges and

√
3-edges is done by the following:
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Here N e
is the number of edges in the graph, e2

i and e
√

3

i , 0 ≤

i < N e
, are positive integers indicating the number of 2-edges and

√
3-edges constituting the i-th edge in the graph. Li , 0 ≤ i < N e

, are

the actual lengths of the graph edges in 3D. fj denotes the j-th face

in the graph. a, 0 ≤ a < 12, indicates one of the twelve directions.

|E2,a | and |E
√

3,a | are the six-integer vectors of the 2-edge and

√
3-

edge in the a-th direction. Ie
2,a,fj

and Ie
√

3,a,fj
indicate the lists of

indices of 2-edges and

√
3-edges circulating fj in the a-th direction

(the first edge of every face is chosen to be at the 0-th direction).

In short, the objective function is to minimize the sum of squared

errors of the differences between the combinatorial edge lengths

2e2

i +
√

3e
√

3

i and their actual lengths Li . The constraints are to ensure
that for every face, the boundary loop forms a closed loop in the

six-integer discrete coordinate system.

Additional results. In Fig. 24 we show the input surfaces as fine

polygonal meshes for the examples shown in Fig. 12, Fig. 18, Fig. 19,

and Fig. 20. In Fig. 25, we show more results for the British Museum

model. In Fig. 26, we show planarity optimization for the Yas Island

Hotel results. The 3D details are shown in Fig. 27. In Fig. 28, we

show additional rendering for selected results. In Fig. 29, we show

the computed edge candidates for selected boundaries.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201306
https://doi.org/10.1145/3197517.3201306


1:2 • Chi-Han Peng et al.

Fig. 24. Input surfaces given as fine polygonal meshes.

Fig. 25. Left: A 3D hybrid mesh design for the Great Court of British Museum not shown in Fig. 19. Right: Three results of left-right reflective symmetry for
the patch graph of Fig. 19 (c).

Fig. 26. Meshes (a), (b) and (c) from Fig. 18 after optimization for planarity with the same tolerance for proximity to the reference surface. Similar to the
results in Fig. 22, planarity optimization achieved better scores with the fractured patterns in (c). Only pattern (c) could be planarized according to construction
requirements.
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Fig. 27. Interesting 3D details on the planarity optimization results of meshes (a), (b) and (c) from Fig. 18. The top and bottom of each row show the meshes
before and after the planarity optimization.

Fig. 28. (a)-(e): Rendering for meshes Fig. 16, Fig. 15 (a), Fig. 18 (c), Fig. 14 tatT, and Fig. 19 (b).
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Fig. 29. We visualize the computed edge candidates (interior 2-edges) for four selected boundaries. On the top row we show one possible computed solution
inside the boundary. On the bottom row we show all the computed edge candidates. The numbers of generated edge candidates from left to right are: 234, 390,
3946, and 31174.
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