
Exploring Quadrangulations
CHI-HAN PENG
Arizona State University
MICHAEL BARTON and CAIGUI JIANG
King Abdullah University of Science and Technology
and
PETER WONKA
Arizona State University and King Abdullah University of Science and Technology

We present a framework for exploring topologically unique quadrangula-
tions of an input shape. First, the input shape is segmented into surface
patches. Second, different topologies are enumerated and explored in each
patch. This is realized by an efficient subdivision-based quadrangulation al-
gorithm that can exhaustively enumerate all mesh topologies within a patch.
To help users navigate the potentially huge collection of variations, we pro-
pose tools to preview and arrange the results. Furthermore, the requirement
that all patches need to be jointly quadrangulatable is formulated as a lin-
ear integer program. Finally, we apply the framework to shape-space ex-
ploration, remeshing, and design to underline the importance of topology
exploration.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling

General Terms: Algorithms

Additional Key Words and Phrases: quadrilateral meshes, mesh optimiza-
tion, topology, geometry processing, mesh connectivity

ACM Reference Format:
Peng, C-H., Barton, M., Jiang, C., and Wonka, P. 20xx. Exploring Quad-
rangulations. ACM Trans. Graph. dd, m, Article xxx (Month, YYYY), xx
pages.
DOI = 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

This research was supported by the National Science Foundation and
KAUST.
Authors’ addresses: C-H. Peng, CIDSE, Arizona State Univer-
sity; email: pchihan@asu.edu; M. Barton, C. Jiang, and P. Wonka,
GMSV, King Abdullah University of Science and Technology;
email: michael.barton@kaust.edu.sa, caigui.jiang@kaust.edu.sa,
pwonka@gmail.com.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/13-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Existing quadrangulation algorithms tackle surface remeshing
problems using optimization frameworks. While users may obtain
slightly different results by adjusting the optimization parameters,
a systematic exploration of alternative quadrangulations is not fea-
sible. By contrast, our goal is to help users to explore all possible
topologically unique quadrangulations of an input mesh in an effi-
cient and organized way.

The first challenge is the enumeration of topologically unique
quadrangulations. Without constraints, the possibilities are innu-
merable. Thus, we take a two-stages approach: in the first stage,
the input mesh is segmented into surface patches, typically along
sharp features. Since patch boundaries need to be matched, i.e., no
T-junctions are allowed, finding the boundary configurations that
make all patches jointly quadrangulatable may be challenging. We
show that the problem can be formulated as a linear integer pro-
gram. In the second stage, topologies are enumerated for each patch
with the guarantee that the patch boundaries will match.

Exhaustively enumerating all possible quadrilateral topologies
for a patch within a reasonable time is made possible by the fol-
lowing fact: assuming that the number of irregular vertices should
be minimized, any complex patch of a quadrangular mesh can be
subdivided into a collection of certain patches that we call simple
patches. Fueled by this idea, our enumeration algorithm subdivides
each patch into a collection of simple patches that are quadrangu-
lated by a closed-form solution. The task of enumerating topolog-
ical variations thus become much more manageable because we
only need to enumerate different ways to perform the aforemen-
tioned subdivisions.

Inundating users with hundreds, even thousands, of possible
variations in an arbitrary order is a job only half done. The second
challenge is to help users efficiently navigate the solution space.
We propose three approaches to tackle this challenge. First, the
enumeration can be guided by a sampling method, so that a snap-
shot of the whole solution space can be quickly retrieved. Second,
variations that are topologically similar, i.e., isomorphic graphs un-
der a rotational symmetry, can be clustered to reduce visual clutter.
Third, variations can be sorted by both the topological and the ge-
ometric characteristics of the quadrangulation.

Finally, we demonstrate why topological exploration is impor-
tant by showing several examples for which alternative quad mesh
layouts can be useful.

2. RELATED WORK

In the following, we briefly review recent quadrangulation meth-
ods in general and algorithms that explore quad mesh topologies in

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



2 • C.H. Peng et al.

Fig. 1: Overview of our quadrangulation framework. (a) A control graph is generated by segmenting the underlying input mesh into a
collection of surface patches. (b) The numbers of vertices on each edge can be computed by integer programming such that all patches
are quadrangulatable by the minimum number of irregular vertices. Exhaustive enumerations of all topologies with the minimal number of
irregular vertices for every patch are shown. (c) By picking one desired topology for each patch (marked), a full requadrangulation of the
mesh can be generated.

more detail. For a broader background on polygon mesh process-
ing and quad meshing, we suggest the book by Botsch et al. [Botsch
et al. 2010] and the survey by Bommes et al. [Bommes et al. 2012].

Most existing algorithms for quad mesh generation are geared
towards computing a single optimized quad mesh. Many popular
algorithms generate a quad mesh from a field by streamline trac-
ing, e.g., [Alliez et al. 2003; Marinov and Kobbelt 2004; Dong
et al. 2005]. While fields can be edited by specifying locations of
singularities or by controlling parameters of an optimization func-
tion, e.g., [Zhang et al. 2006; Tong et al. 2006; Palacios and Zhang
2007; Ray et al. 2008; Ray et al. 2009], there is no direct relation-
ship between a field and a resulting quad mesh, because the algo-
rithms used to derive a quad mesh from a field are quite involved.
One such tool is global parametrization [Ray et al. 2006; Kälberer
et al. 2007; Bommes et al. 2009; Zhang et al. 2010], which is used
in most recent methods. Several quad meshing algorithms use a
two-stage approach similar to our framework. First, a rough patch
layout is generated and then the patches are quadrangulated [Dong
et al. 2006]. Our algorithm is complementary in the sense that we
assume that the input model is already subdivided in patches (or we
compute a simple patch segmentation semi-automatically).

Besides the aforementioned algorithms, there are other special-
ized patch quadrangulation algorithms, e.g., those that attempt to
find a topology with the fewest irregular vertices possible [Nasri
and Yasseen 2009; Schaefer et al. 2004]. The three most re-
lated concepts for the exploration of quad mesh topologies are
curve sampling [Marinov and Kobbelt 2006], connectivity edit-
ing [Maza et al. 1999; Peng et al. 2011], and advancing fronts
(paving) [Blacker and Stephenson 1991; White and Kinney 1997;
Park et al. 2007]. Marinov and Kobbelt [2006] connect the bound-

ary vertices of a patch by curves and propose an algorithm to gen-
erate a layout and another algorithm to mutate an existing layout.
The purpose of the algorithm is quad mesh generation, but it could
also be used to explore quad mesh topologies. Compared with our
algorithm, this approach generates a much larger set of invalid and
duplicate meshes. Advancing-front algorithms incrementally grow
quad elements from the patch boundaries and they could be used
for enumerating topologies. However, one problem is that the al-
gorithm does not terminate without a geometric heuristic and can
grow fronts indefinitely.

3. OVERVIEW

3.1 Basic Definitions

The valence of a vertex, v, which we denote as l(v), is the number
of edges in the mesh incident to v. A vertex with valence n is de-
noted as vn, e.g., v3 and v5. A v4 vertex is considered as regular,
and vertices of other valences are referred to as irregular. We con-
sider irregular vertices with valences lower than 3 or higher than 5
as multiple v3 or v5 collocated together (and therefore count them
as multiple irregular vertices).

DEFINITION 1. A path γ is a sequence of edges ei = (vi, vi+1)
for 0 ≤ i < R. R is the length of γ. A path is a loop if v0 = vR.
Otherwise, γ is an open path.

DEFINITION 2. A (quadrilateral) patch P is a connected sub-
set of the quadrilaterals in a mesh M without handles and it is
enclosed by one or multiple loops, which we denote as P ’s bound-
aries. A patch is regular if there are no irregular vertices in its inte-
rior. Each vertex along the boundary can be a non-corner, convex

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Exploring Quadrangulations • 3

corner, or concave corner. Convex and concave corners divide the
boundary into several sub-paths, which we denote as sides. A patch
is convex if it does not contain any concave corners; otherwise, it
is concave.

DEFINITION 3. Each boundary loop of a patch can be encoded
by the length of sides and the type (convex or concave) of corners
encountered during a closed, counterclockwise walk, beginning at
an arbitrary vertex. During the walk, we keep a conceptual facing
direction as a signed integer, beginning at zero. It is incremented
by one when a convex corner is encountered, and decremented by
one when a concave corner is encountered. We assign each side a
direction given the current facing direction when it is encountered.
Sides with the same direction are grouped together to form an ef-
fective side. A patch with N effective sides is called an N -sided
polygon or N -gon for short.

DEFINITION 4. For a patch with all irregular vertices in its in-
terior, Int, the total valence deficit, TV D, is

∑
i∈Int 4− l(vi).

The extension to patches with irregular vertices on the boundary
is straightforward but cumbersome to describe so we omit it here.
Interestingly, the TV D of a patch can be derived from its bound-
ary loops, a direct result of the discrete Gauss-Bonnet theorem for
surface with boundaries. For a patch with one boundary loop, its
TV D can be derived as 4 − n, where n is the number of convex
corners minus the number of concave corners on the boundary. The
TV D of patches with multiple boundary loops is described in Sec-
tion 5.1.5.

3.2 Framework Overview

An overview of our framework is shown in Figure 1. The input
to our system is a polygon mesh of arbitrary type, e.g., triangular,
quadrilateral, or hybrid, representing a two-manifold surface. The
input mesh serves as guidance for generating the control graph,
which is a cage-like structure that encodes a patch segmentation of
the input mesh (Section 4). The patches of the control graph serve
as the inputs to our quadrangulation algorithm that has the abil-
ity to exhaustively enumerate all possible quadrilateral topologies,
i.e., remeshing, within each patch (Section 5). To help users navi-
gate the potentially huge space of possibilities, we propose a sam-
pling strategy such that a snapshot of the whole solution space can
be quickly retrieved (Section 5.4). In Section 6, we show that the
task of finding boundary constraints that make all patches jointly
quadrangulatable can be formulated as a linear integer program-
ming problem.

4. CONTROL GRAPH MODELING

A control graph is a cage-like structure that encodes a segmenta-
tion of the input mesh. In essence, it is a coarse two-manifold mesh
comprised of (curved) edges on the input mesh and faces that we
call surface patches. The surface patch is required to be pathwise-
connected, without handles, with at least one boundary loop, but
not necessarily simply connected, e.g., a topological disc with zero
or more holes. In our system, a control graph is generated either
automatically by detecting sharp features using angle thresholds,
or interactively by clicking on specific edges, or imported from an-
other existing algorithm.

The control graph also encodes topological constraints for the
subsequent patch quadrangulations that can be obtained by linear
integer programming to satisfy additional requirements, e.g., all
patches need to be quadrangulatable. For each edge of the control
graph, we determine the number of vertices on the edge such that

(a) (b)

Fig. 2: (a) A boundary configuration of a patch with two boundary loops,
each shown as a strip of arrows in counter-clockwise (outer) and clock-
wise order (inner). Prescribed inward edges are shown as arrows pointing
inwards. Note that convex corners (shown in blue) emanate no inward edge
while concave corners (shown in red) emanate two inward edges. (b) De-
composing a complex quadrangulation into a collection of simple triangle
(blue) and pentagon (yellow) patches.

the number of boundary vertices for all patches is given. Further, we
define the number of inward edges for each vertex on the bound-
ary by classifying the vertices as convex, concave, or non-corner
emanating none, two, or one inward edges, respectively. See Fig-
ure 2a for an illustration. In the following, we present an algorithm
and interface to enumerate and explore the different topologies for
one patch at a time with fixed boundary constraints. In a typical us-
age scenario, the user iterates between exploring the topologies of
different patches and editing topological boundary constraints.

Parameterization: We build a 2D parameterization for each
patch to initialize the vertices with 2D positions during the topo-
logical enumeration. We typically use LSCM [Lévy et al. 2002]
in favor of its conformal and open boundary traits. A comparison
between different parameterization methods is described in the ad-
ditional materials. We emphasize that a pure topological enumera-
tion can work even without parameterization. The parameterization
is used simply for visualization and sampling/ranking purposes. In-
puts to the parameterization are the faces and vertices of the input
mesh enclosed by the patch’s boundary. Since sharp features are
typically captured in the control graph, we assume that the pa-
rameterization will be of reasonable quality. In practice, LSCM
may generate non-bijective parameterizations if the patch’s shape is
highly concave or has inner boundaries. We currently work around
the problem by subdividing patches. A better solution to this prob-
lem would require implementation of more advanced parametriza-
tion algorithms.

5. ENUMERATING QUADRANGULATIONS FOR
PATCHES

The input for this stage is a patch including its boundary configura-
tion, i.e., the vertices at the boundary and their prescribed number
of inward edges. A quadrangulation has to form connections be-
tween all inward edges. At a glance, the task can be intimidating.
There areO(x!) possible ways to connect x inward edges such that
an exhaustive enumeration is simply infeasible. Besides, inner ir-
regular vertices, of which the types, numbers, and positions are un-
known, can divert the connections and create additional complex-
ity. The main idea of our approach is to use the observation that
every quad mesh can be partitioned into certain simple patches that
contain one or zero irregular vertices (See Figure 2b). The enumer-
ation problem is thus greatly reduced to enumerating subdivisions
into simple patches.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



4 • C.H. Peng et al.

(a) (b)

Fig. 4: (a) Left and middle: Two examples of boundary-case pentagons.
Right: A boundary-case triangle. (b) A patch with a boundary that is in-
compatible with its potential embedding in a 4-by-8 parallelogram.

Another important idea of our approach is to devise an explo-
ration strategy that can enumerate a reasonable subset of all pos-
sible quad meshes. Since every non-trivial boundary corresponds
to infinitely many pure quad meshes, we need to restrict the enu-
meration somehow. Our assumption is that irregular vertices are
typically considered as undesirable in our primary target applica-
tions, because they break the pattern on the surface. Our explo-
ration algorithm is therefore geared towards enumerating solutions
with the minimal number of (inner) irregular vertices (v3 and v5)
k, k ≥ |TV D|. We can therefore also bound the number of quads
to a reasonable number as a secondary criterion.

In this section, we first present the overall subdivision algorithm
in Section 5.1. The algorithm relies on the efficient enumeration of
subdivisions, which is described in Section 5.2. Strategies to filter
redundantly generated subdivisions are described in Section 5.3.
For larger examples, the enumeration might be time consuming. We
therefore propose a fast sampling strategy to generate interesting
topology variations early in Section 5.4. Finally, we propose tools
to preview and arrange the topological variations in Section 5.5.

5.1 Subdivision-based Quadrangulation of Patches

Our quadrangulation algorithm hierarchically subdivides a patch
into smaller sub-patches until every sub-patch has become a quad.
The process can be described by a subdivision tree: the root node is
the input patch, the internal nodes are sub-patches that need fur-
ther subdivision, and the leaf nodes are quads. We explore this
tree depth first, and for each interior node we first try to classify
the patch and then subdivide it. In order of complexity, we distin-
guish five categories: 1) simple convex patches, 2) simple concave
patches, 3) patches with |TV D| ≤ 1, 4) general patches with a sin-
gle boundary loop, and 5) patches with multiple boundary loops.
We describe how to classify and quadrangulate these five categories
of patches in the following. The categories form a nested hierar-
chy, so that each lower category is a subset of all higher ones. The
strategy of the quadrangulation algorithm is then to split higher-
category patches into lower-category patches.

5.1.1 Simple Convex Patches. A simple convex patch is either
a parallelogram, simple triangle, or simple pentagon, defined as fol-
lows.

DEFINITION 5. A parallelogram is a convex 4-gon with two
pairs of opposite sides of the same length. A simple triangle is a
convex 3-gon that can enclose exactly one v3. A simple pentagon
is a convex 5-gon that can enclose exactly one v5 (Figure 3).

In the following discussions, we refer to simple triangles and
pentagons as triangles and pentagons. Recall from [Peng et al.
2011] that the topological position, i.e., the nearest boundary ver-
tex on each side and the graph distances in between, of a single
v3 or v5 within a convex 3-gon or 5-gon can be uniquely derived
by solving a linear system formed by the side lengths. An inner

(a) (b) (c)

Fig. 5: Simple concave patches embedded inside a (a) parallelogram, (b)
triangle, and (c) pentagon. P is shown in gray and the embedding into P̂ is
shown in yellow.

(a) (b)

Fig. 6: Closed form solutions for quadrangulating simple concave patches
embeddable inside a (a) parallelogram and (b) triangle.

irregular vertex is feasible if and only if all distances to the sides
are positive. If some distances are zero, the irregular vertex actually
lies on the corresponding boundaries, which we denote as bound-
ary cases. Interestingly the feasibility criteria are analogous to their
Euclidean space counterparts: For a convex 3-gon to be a triangle,
the length of the longest side has to be smaller than the sum of the
other two. For a convex 5-gon to be a pentagon, the sum of the
longest consecutive two sides has to be smaller than the sum of the
other three.

Quadrangulation of Simple Convex Patches: A parallelogram
is recursively subdivided into smaller parallelograms along the
longer pair of opposing sides (Figure 3a). For a triangle or a pen-
tagon, we first create the inner v3 or v5 and connect it to each side
according to the solution of the linear system mentioned previously.
The connections subdivide the patch into three or five parallelo-
grams, which are subsequently subdivided (Figure 3b, 3c). Special
care is taken for boundary cases: a triangle with a boundary v3 is
equivalent to a parallelogram and a pentagon with a boundary v5 is
equivalent to a combination of multiple parallelograms (Figure 4).
In practice, we pre-calculate the quadrangulations of simple convex
patches of various side lengths to accelerate the algorithm.

5.1.2 Simple Concave Patches. A simple concave patch is a
single-boundary loop concave patch that can be embedded in a
simple convex one with the same TV D, denoted as the patch’s
extended patch. This is achieved by the cave-filling algorithm (Ap-
pendix A). Figure 5 shows simple concave patches embedded in-
side a parallelogram, triangle, or pentagon.

To determine if patch P is simple concave, we check the follow-
ing in order. 1) The TV D of P has to match a parallelogram (0),
triangle (1), or pentagon (−1). 2) P has a valid extended patch, P̂ ,
according to the cave-filling algorithm. 3) The side lengths of P̂ ,
which is a convex polygon with three to five sides, have to be com-
patible with a triangle, parallelogram, or pentagon. 4) We check if
the embedding is valid, i.e., the boundary of P does not penetrate
the boundary of P̂ (computed by a boundary walk). A counter-
example is shown in Figure 4b.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Exploring Quadrangulations • 5

(a) (b) (c)

Fig. 3: Subdivision steps to quadrangulate a (a) parallelogram, (b) triangle, and (c) pentagon. Inner v3s are shown in cyan and inner v5s
are shown in orange. For a triangle and a pentagon, the topological position of the irregular vertex is uniquely obtained by solving a linear
system. For visualization purposes, we locate the inner v3 or v5 at the least squares solution of the location that is perpendicular to the nearest
boundary vertex on each side in the parameterization domain.

(a) (b) (c)

(d) (e)

Fig. 7: (a) A non-simple patch with TV D = 0 is subdivided into a triangle
and a pentagon. (b) A non-simple patch with TV D = 1 is subdivided into
a triangle and a general 4-gon. (c) A non-simple patch with TV D = −1 is
subdivided into a pentagon and a general 4-gon. (d) A patch with TV D =
5 is subdivided into two sub-patches of TV D = 3 (left) and 2 (right).
(e) A patch’s two boundary loops are combined into one by making a cut
connecting the outer and inner boundary loops. The subdivisions/cuts are
shown in red.

Quadrangulation of Simple Concave Patches: Conceptually,
we first quadrangulate the extended patch and then remove the
quads that were added by the cave-filling algorithm. For an accel-
erated implementation we can directly compute the splits for the
concave patch in closed form (Figure 6).

5.1.3 Patches with |TV D| ≤ 1. This category covers arbi-
trary (possibly concave) single-boundary loop patches, P , with
|TV D| ≤ 1 that do not fall in the previous two categories. There
are the following possibilities: 1) P does not have a valid extended
patch P̂ according to the cave-filling algorithm. 2) The side lengths
of P̂ are incompatible with a parallelogram, triangle, or pentagon.
3) P ’s embedding is invalid, i.e., the boundary of P penetrates the
boundary of P̂ . Our strategy is to subdivide such a patch recur-
sively until it is decomposed into a collection of simple concave or
convex patches, explained in the following.

For the second kind of patch, additional inner v3-v5 pairs are
necessary for the patch to be quadrangulatable. Note that v3-v5
pairs do not affect the patch’s TV D. We distinguish three cases:

—P̂ is a convex 4-gon but not a parallelogram. The quadrangula-
tion requires one or more v3-v5 pairs. We subdivide P into a
triangle, which can be quadrangulated in closed form, and a gen-
eral 5-gon, which is subsequently quadrangulated (Figure 7a).

—P̂ is a convex 3-gon but not a triangle. The quadrangulation re-
quires a v3 plus one or more v3-v5 pairs. We subdivide P into a
triangle and a general 4-gon (Figure 7b).

—P̂ is a convex 5-gon but not a pentagon. The quadrangulation
requires a v5 plus one or more v3-v5 pairs. We subdivide P into
a pentagon and a general 4-gon (Figure 7c).

For the first and third kinds of patch, we simply subdivide it
heuristically by the scoring function described in Section 5.4.

5.1.4 General Single-Boundary Loop Patches. This category
covers arbitrary single-boundary loop patches (not classifiable in
the previous categories). Since these patches have to be subdivided,
our aim is to minimize the number of subdivisions by keeping the
TV D of the two sub-patches as equal as possible. Empirically, this
leads to fewer splits and approximately logarithmic time complex-
ity. Thus, at every recursion, a patch of TV D = t is subdivided
into two sub-patches of TV D = d|t|/2e and b|t|/2c. An example
is shown in Figure 7d where a patch with TV D = 5 is subdivided
into two sub-patches of TV D = 3 and 2.

5.1.5 Multi-Boundary Loop Patches. This category covers
patches with g+ 1 boundary loops (g > 0). Since the patch is con-
nected, the boundary loop with the largest bounding box in the 2D
parameter domain is distinguished as the outermost contour, while
all other boundary loops are considered contours surrounding inner
holes. To quadrangulate P , edge strips connecting the outermost
contour and each inner contour are required. A connection bridges
the inner contour to the outermost contour with four additional con-
vex corners at the two joints. Eventually, all boundary loops are
merged and the patch has a unified boundary loop. The TV D of
the patch thus can be calculated as the number of convex corners
minus the number of concave corners on all boundary loops, plus
the additional four convex corners per connection.

To quadrangulate a multi-boundary loop patch, we first trans-
form it into single-boundary loop by making g aforementioned con-
nections suggested by the scoring function described in Section 5.4.
An example is shown in Figure 7e.

5.2 Enumerating Subdivisions

Recall that our quadrangulation algorithm recursively subdivides a
patch until it is decomposed into a collection of simple convex and
simple concave patches, which are then uniquely quadrangulated.
At each subdivision, we face the choices of 1) which pairs of in-
ward edges to connect and 2) how many inner vertices to generate

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



6 • C.H. Peng et al.

on the connecting path, i.e., its (topological) length. Enumerating
these choices at every recursion is equivalent to enumerating the
topologies of a patch. The guidelines to constrain the enumeration
are given below.

The choices of which pair of inward edges to connect are well
constrained: when subdividing patches of the third and fourth cat-
egories, only connections that would lead to sub-patches with de-
sired TV D are acceptable. When subdividing patches of the fifth
category, only connections of inward edges of different boundary
loops are acceptable. Constraints for the length of the connection
path are described as follows.

(1) The lengths of boundaries of the resulting sub-patches need to
be even, otherwise no quadrangulation exists.

(2) Except for parallelograms, which can be quadrangulated with-
out inner irregular vertices, the length of every effective side
needs to be ≥ 2 since such a sub-patch must accommodate at
least a triangle (for v3) or a pentagon (for v5), of which every
effective side length is at least 2.

(3) Requirements for sub-patches to be simple (parallelogram, tri-
angle, and pentagon), which occur at subdividing patches of
the third category, constrain the length of the connection to be
a single value (parallelogram) or within a range (triangle and
pentagon).

(4) Requirements for sub-patches to have more than five effective
sides (TV D < −1), which occur at subdividing patches of the
fourth category, constrain the length of the connection under
the assumption of Theorem 6.

Note that the third and fourth constraints are applicable only un-
der the assumption that redundant v3-v5 pairs are to be avoided;
otherwise, connections of arbitrarily long lengths can be accom-
modated by an arbitrary amount of v3-v5 pairs.

(a) (b)

Fig. 8: (a) A quadrangulation of a 7-sided convex patch with the inequality
in Theorem 6 being exactly satisfied, i.e., the longest consecutive pair of
sides (red) cannot be any longer if the lengths of other sides are fixed. The
2|TV D| edges on the other sides and their emanating polychords that can
never reach the longest pair are marked in green. (b) Left: quadrangulation
of an 8-sided convex patch with the inequality in Theorem 6 being exactly
satisfied. Right: the corresponding base pentagon quadrangulated with a
boundary-case solution. Side S of the pentagon is shown in green, which is
expanded to be the patch’s sides S3 to S6 with a strip of quads (green and
yellow) and the three inner v5s (marked) inserted accordingly. Note that the
lengths of S2 and Sn−1 are also increased by one.

THEOREM 6. Under the assumption that a patch is convex,
TV D < −1, and the sum of the lengths of boundaries is even.
Then, the patch is quadrangulatable without inner v3-v5 pairs
⇐⇒ the sum of the lengths of the longest consecutive pair of sides
≤ the sum of the lengths of all other sides minus 2|TV D|.

Fig. 9: The quadrangulations with the minimal and maximal numbers of
quads for a 2-sided patch with side lengths (7, 7) (left) and a 1-sided patch
with side length 10 (right). Note that there are two v3 collocated as a v2 in
the quadrangulations of the 1-sided patch.

PROOF. ⇒: Every polychord ( [Daniels et al. 2008]) emanating
from an edge of the longest consecutive pair of sides must end at the
other sides; otherwise, it would subtract a 2-sided polygon (ending
at the same side) or a triangle (ending at the adjacent side) out of
the patch. In both cases, an inner v3 is implied, a contradiction to
our assumption that patch has TV D < −1 (thus having v5) and
no v3-v5 pairs. Furthermore, there are 2|TV D| edges on the other
sides that can never emanate a polychord to the consecutive pair of
sides (Figure 8a).
⇐: We denote the lengths of the longest consecutive pair of sides

as s0 and s1 and the lengths of the other sides as s2 to sn−1 in
counter-clockwise order. Our idea is to show that there exists a cor-
responding base pentagon, see Figure 8b, that can be quadrangu-
lated with a boundary-case solution, and that there always exists a
way to extend the quadrangulation of the pentagon to be a quadran-
gulation of the patch. The lengths of the base pentagon’s sides are:
s0, s1, s2 − 1, S, and sn−1 − 1 in counter-clockwise order, where
S =

∑n−2
i=3 si−2(|TV D|−1). Note that si ≥ 2, 0 ≤ i < n by the

aforementioned second constraint. It is straightforward to see that
the pentagon can be quadrangulated with a solution in which the
v5 is lying in the interior of side S. A quadrangulation of the patch
can be then generated by inserting a strip of quads and |TV D| − 1
v3-v5 pairs (the v3s are on the patch’s boundary, serving as cor-
ners, and the v5s are internal) at corresponding locations right next
to side S. See Figure 8b for an example.

On the other hand, for sub-patches with TV D > 1, the length of
an effective side can be arbitrarily long, since there exists a poly-
chord that begins and ends at the same effective side. Since the
choice of the length of the connection is unbounded, we resort to
the constraints for the maximal number of quads described next.

THEOREM 7. When quadrangulated with two v3s and no v5,
the maximal number of quads in a 2-sided patch (TV D = 2) with
side lengths b0 and b1 is bb0/2cdb1/2e+ db0/2ebb1/2c.

THEOREM 8. When quadrangulated with three v3s and no v5,
the maximal number of quads in a 1-sided patch (TV D = 3) with
side length b0 is (b0b0)/4− 1.

Proofs of Theorem 7 and 8 are based on analyzing the decompo-
sition of the patches into triangles and are given in the additional
materials. A 2-sided and a 1-sided patch quadrangulated with the
maximal and minimal numbers of quads are shown in Figure 9.
Finally, for sub-patches with TV D ≥ 4, the number of quads
can be arbitrarily large even with fixed side lengths, since such a
patch may contain an infinite amount of inner polychord cycles.
For such cases, we constrain the length of the connection by geo-
metric heuristics.

Thresholding the Number of Irregular Vertices: |TV D| de-
termines the lower bound of (inner) irregular vertices (v3 and
v5) required to quadrangulate a patch. The lower bound can be
achieved only if irregular vertices of one type are solely used (v3 or

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Exploring Quadrangulations • 7

(a) (b)

Fig. 10: (a) Three parallel connections are shown in red. All of them subdi-
vide the patch into a triangle and a pentagon and result in equivalent topolo-
gies. Note that the top one leads to a boundary-case triangle and the bottom
one leads to a boundary-case pentagon. (b) Comparing the ranking of con-
nections. Connection C1 is top-ranked. C2 is ranked lower because it is less
perpendicular to the boundary edges at its two vertices. C3 is also ranked
lower because the geometric length of its subdivided edges deviates from
the average length of the patch’s boundary edges. C4 is ranked lowest be-
cause it goes outside the 2D parameter domain.

v5). However, such solutions may not be feasible, e.g., for skewed
patches, additional v3-v5 pairs will be needed. Restricting the num-
ber of irregular vertices is thus equivalent to setting an upper limit
on the number of v3-v5 pairs. To retrieve solutions with the min-
imally possible numbers of irregular vertices, our strategy is to
enumerate quadrangulations with an increasing upper limit of v3-
v5 pairs, beginning at zero. Empirically, we found that the space
of enumerations grows exponentially with the number of allowed
v3-v5 pairs. The computational overhead of the unsuccessful trials
with insufficient upper limits for v3-v5 pairs can thus be neglected.

5.3 Filtering Redundant Enumerated Topologies

A challenge of our enumeration framework is that multiple enu-
merated subdivision trees can result in equivalent topologies, cor-
responding to the multiple ways to decompose a quadrangulation
into simple patches. We reduce exploration of redundant subdivi-
sion trees by filtering parallel connections defined as follows.

DEFINITION 9. Two connections, V 1 − V 2 connected by L1
edges and V 3− V 4 connected by L2 edges, are parallel if: 1) V 1,
V 3 are on the same side and V 2, V 4 are on the same side, 2)
L1 = L2, and 3) the lengths of the boundaries between V 1, V 2
and V 3, V 4 are the same.

From a set of parallel connections, we pick the highest ranked
one according to the heuristics described in Section 5.4 and discard
the rest. Examples of parallel connections are shown in Figure 10a.
It is straightforward to see that the resulting topologies of the par-
allel connections are different only by a parallelogram in between
(assuming that v3-v5 pairs are to be avoided) and thus are equiva-
lent. Note that this filtering strategy is not yet exhaustive, and there
may be redundant connections being explored. An analysis of the
filtering performance is provided in Section 7.

Finally, we filter enumerated topologies that are equivalent, i.e.,
graph isomorphic. Recognizing graph isomorphism can be done in
linear time in our case since the topologies share the same patch
boundaries. An algorithm is described in the following.

Recognizing Graph Isomorphism: Vertices of a certain topol-
ogy are ordered in increasing order according to their topologi-
cal distance from the patch boundary. The boundary vertices, of
which the distances are 0, are sorted in a counter-clockwise fashion
starting at a fixed boundary vertex. Inner vertices with distance d
(d > 0) are sorted as follows. We define the parent vertex of an

(a) (b)

Fig. 11: (a) A quadrangulation of which the topology profile is
{(3, 3, 4), (1, 1, 1, 4, 8), (1, 2, 3, 3, 4)}. (b) Ordering of vertices in a patch
for the graph isomorphism test.

inner vertex as the one that is sorted foremost among its adjacent
vertices of distance d−1. For two inner vertices V 1 and V 2, V 1 is
sorted prior to V 2 if V 1’s parent vertex is sorted prior to V 2’s and
vice versa. If their parent vertices are the same, V 1 is sorted prior
to V 2 if it is prior among the parent vertex’s neighbor list and vice
versa. Such orderings can be found by a simple flooding strategy
in linear time. It is straightforward to see that such an ordering is
unique for a given topology. This algorithm is thus guaranteed to
detect graph isomorphism among equivalent topologies. See Fig-
ure 11b for an example.

5.4 Ranking and Sampling Topological Variations

We can retrieve a quick snapshot of the whole space of enumera-
tions by sampling only a subset of connections at each recursion.
First, we rank each connection by a simple scoring heuristic con-
sidering the following geometric properties. Highly ranked connec-
tions have a better chance to generate quadrangulations with better
geometric qualities and vice versa. Assuming that the connection is
a straight line in the 2D parameter domain connecting V 1 and V 2
uniformly subdivided into L1 edges, we first measure how perpen-
dicular the connection is to the boundary edges at V 1 and V 2. A
more perpendicular connection means that we have a better chance
of forming right angles at V 1 and V 2. Second, we measure the dif-
ference of the geometric length of the L1 subdivided edges to the
average geometric length of the patch’s boundary edges. A smaller
difference implies a more appropriate choice of L1. Third, we fa-
vor the geometrically shorter among connections that are equally
ranked by the first two properties. Finally, we penalize connections
that go outside the 2D parameter domain, which may happen for
patches with geometrically concave parts. An illustration of the
ranking is shown in Figure 10b.

After the connections are sorted by the heuristic, we can per-
form sampling in an uniform or greedy way. In the uniform way,
we sample one connection among similarly ranked connections at
each recursion. A snapshot that covers a variety of quadrangula-
tions can thus be retrieved. In the greedy way, we simply sample
the top-ranked connections, such that a subset of quadrangulations
with better geometric qualities can be retrieved. In both ways, the
exploration is done in a depth first manner but with the number of
child nodes at each branch reduced.

5.5 Navigating Topological Variations

We develop a real-time browsing interface to help users visually
navigate topological variations. Note that only unique topologies
are presented after the aforementioned filtering process. Since enu-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



8 • C.H. Peng et al.

merated topologies are updated in real time, the aforementioned
ranking heuristics play an important role by determining which
topologies are presented first. A reasonable 2D visualization for
each topology is generated by applying Laplacian smoothing with
the boundary vertices fixed.

Users can choose to sort the topological variations by three types
of statistics: 1) density (number of quads), 2) geometric quality cri-
teria described in [Yang et al. 2011], and 3) the topology profile
described next.

Assume that there are n (inner) irregular vertices in a topology,
vi, 0 ≤ i < n, sorted in ascending order of valences: l(vi) ≤
l(vi+1), 0 ≤ i < n−1. For each irregular vertex, vi, the sequence,
si,j for 0 ≤ j < l(vi), denotes the lengths of emanated separatrices
stopped by hitting the boundary or other interior irregular vertex,
which are sorted in ascending order. Sequences of each irregular
vertex are further sorted in ascending order by considering each
sequence as a decimal number. For example, a sequence of 3 −
4− 5 from a v3 is placed before a sequence of 0− 1− 2− 3− 4
from a v5. The sequences of all irregular vertices congregated in the
sorted order serve as a topological profile summarizing the relative
positions of the inner irregular vertices, see Figure 10.

Furthermore, topological variations that are rotationally equiv-
alent, i.e., corresponding to one topology being rotated, have the
same topological profile. Such variations can be identified and clus-
tered to reduce visual clutter.

6. INTEGER PROGRAMMING

Assigning numbers of vertices lying on each boundary edge of a
control graph path, i.e., their (topological) length, can be a non-
trivial task when there exist additional requirements for the patches.
We formulate the task as a linear, pure integer programming prob-
lem in which the variables are the lengths of edges and each patch
imposes its requirements as linear constraints. We denote the length
of the i-th edge as a positive integer variable, Li, 0 ≤ i < n, where
n is the number of edges. A minimal requirement for all patches to
be quadrangulatable is that the sum of side lengths is even for ev-
ery patch, written as

∑
Li∈Pj

Li− 2Sj = 0 for every patch Pj (Sj

are positive integer slack variables). It is straightforward to see that
feasible solutions exist, e.g., if every side length is even. To further
require that certain patches can be quadrangulated without v3-v5
pairs, the following constraints are added:

—For a patch with non-zero TV D, lengths of every side≥ 2. This
corresponds to the second constraint of connection lengths in
Section 5.2.

—For a triangle (TV D = 1), parallelogram (TV D = 0), and
pentagon (TV D = −1), side lengths are constrained by Defini-
tion 5.

—According to Theorem 6, for a patch with TV D < −1, the sum
of the lengths of every consecutive pair of sides≤ the sum of the
lengths of all other sides minus 2|TV D|.
The above constraints are applicable only under the assumption

that a patch is convex and has a single boundary loop. Therefore,
patches with multiple boundary loops and concave patches need to
be split with the heuristics described in Section 5.1.5 and 5.4 first.
In practice, we apply the above constraints to all patches initially.
If the system is overconstrained, we heuristically drop constraints
for selected patches until the system becomes feasible.

Feasible solutions to the above problem guarantee that all
patches are jointly quadrangulatable; however, they may be ge-
ometrically undesirable, e.g., geometrically long edges are seg-
mented sparsely and vice versa. To address this problem, every

edgeLi is given an optimal topological lengthOi as the rounded ra-
tio of its geometric length to a desired edge length. We first impose
the following constraints: |Li −Oi| ≤ C, 0 ≤ i < n, where C is a
(non-negative integer) value thresholding the feasible range of each
Li. Furthermore, we formulate the cost function as

∑n−1
i=0 |Li/Oi−

1| under the assumption that the length of each optimally subdi-
vided segment is one. Each nonlinear term (|Li/Oi − 1|) is ap-
proximated as a linear function within the feasible range of Li

in a least-squares sense, e.g., as a linear equation passing through
(Oi −C, |(Oi −C)/Oi − 1|) and (Oi +C, |(Oi +C)/Oi − 1|).
A mathematical formulation of the integer programing problem is
as follows.

n−1∑
i=0

|Li/Oi − 1| → min such that (1)

for every edge

Li > 0 and |Li −Oi| ≤ C, i = 0, . . . , n− 1

and for every patch ∑
Li∈Pj

Li − 2Sj = 0.

Additionally, depending on the type of each individual patch, Pj ,

• patches with non-zero TV D : Li ≥ 2,

• parallelograms : Li0 = Li2 ,

• triangles : Li0 + 1 ≤ Li1 + Li2 ,

• pentagons : Li0 + Li1 + 1 ≤
∑

i6=i{0,1}

Li,

•N -gons with TV D < −1 : Li0 + Li1 + 2|TV D| ≤
∑

i 6=i{0,1}

Li

need to hold for all admissible Li ∈ Pj . We denote Lik as the
length of the k-th next side after Li in Pj in a counter-clockwise
order. For example, Li0 denotes Li itself, Li1 denotes the length
of the side next to Li in Pj , and so on. We solve the problem by
lpsolve [Berkelaar et al. 2004].

7. RESULTS AND APPLICATIONS

Complexity of the Enumeration: The only competing approach,
that we are aware of, is the brute-force enumeration of all possible
connections of inward edges, e.g., [Marinov and Kobbelt 2006].
For simplicity, we present an example where the number of inner
irregular vertices of the patch is minimal, a 100 by 100 2-sided
patch (TV D = 2). In the brute-force approach, there are a stag-
gering 198!/2 possible connections of the 198 inward edges, even
before considering the effect of inner irregular vertices. In our ap-
proach, we need to enumerate all first-level subdivisions between
the i-th (1 ≤ i ≤ 99) inward edge of the first side and the j-th
(1 ≤ j ≤ 99) inward edge of the second side. By filtering, we just
need to enumerate one connection among all pairs with i− j = d,
where −98 ≤ d ≤ 98. After the first level of subdivision, we have
two simple triangles that are uniquely quadrangulated. In total, we
just need to enumerate 197 possible cases.

Comparison to [Peng et al. 2011]: In the Peng et al. paper, an
exhaustive enumeration of all possible topologies involving up to
two irregular vertices (v3 and v5) is provided. In this paper, we
extend the idea to enumerate all possible topologies of a given patch
exhaustively, upper bounded by the number of irregular vertices.
Moreover, their method requires an initial mesh to work on.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Exploring Quadrangulations • 9

v3- boun. unique total time time
patch TV D v5 length topo. cluster topo. (total) (first)
Figure 7a 0 1 22 12 12 36 0.17 0.01
Figure 7e,5% -4 0 56 536 525 568 198.62 0.06
Figure 8b -3 0 34 7 5 77 0.28 0.00
Figure 14,1 -2 0 66 4 4 10 0.43 0.08
Figure 14,2 2 0 36 57 35 120 4.34 0.05
Figure 14,3 -4 0 66 559 558 3064 79.89 0.06
Figure 13 1 1 30 30 30 232 1.59 0.03
Figure 18 4 0 16 254 52 5166 23.09 0.01

Table I. : Timing statistics showing: 1) the number of unique topologies
after filtering, 2) clusters of rotationally equivalent topologies, 3) total enu-
merated topologies, and 4) the time spent for complete enumerations and
retrieving the first topology.

Statistics: Table I shows the time spent on enumerating all
topologies with the minimal number of irregular vertices (or capped
at a reasonable number of quads if such topologies are infinite) for
patches shown in the paper, recorded on a standard 2.66GHZ PC.
In most cases, the first topology is retrieved instantly. For patches
with excessive amounts of variations such as Figure 7e, we only
sample a fraction of all possibilities. We find that the time complex-
ity does not depend on the number of vertices on the boundaries;
instead, it is proportional to the number of non-parallel connections
enumerated during the subdivisions.

Shape-Space Exploration: Shape-space exploration is a pow-
erful tool [Yang et al. 2011] to modify a planar quad (PQ) mesh,
while faithfully preserving the planarity of the faces and satisfying
additional constraints like proximity to a reference object, fairness,
etc. Each mesh corresponds to a point in a high-dimensional shape
space, and the planarity constraint forms a certain manifold in that
space, called the planarity manifold. We apply shape-space explo-
ration to investigate the most natural behavior of different topolog-
ical patterns and to understand the significance of topology in the
genesis of PQ meshes. While the original shape-space exploration
itself gives rise to a large variety of meshes with one fixed topology,
we can now explore an even wider spectrum of possible shapes by
varying the topology and geometry together.

We demonstrate how shape-space exploration interacts with var-
ious topological patterns. In Figure 12, we show the variations of a
3D mesh whose planar elliptic boundary has been fully fixed. The
variations are ranked according to three different geometric objec-
tives (planarity, fairness, circularity) and color coded in the visual-
ization such that we can observe which topologies are well suited
for a specific geometric objective. A shape-space exploration that
starts with a fully planar mesh is shown in Figure13. Six feature
vertices are selected to remain in the plane while the remaining
vertices are freely movable. The goal of this exploration is to see
the natural shapes of each topology. As it is difficult to compare
general shapes, we apply a geometric heuristic to select the best
bump shape for thirty different topologies. This example illustrates
that some topologies are more suitable for a selected target shape.

Exploring Alternative Requadrangulations: We show that our
enumeration framework enables users to explore multiple distinc-
tive requadrangulations of an input mesh. In Figure 14, we explore
alternative requadrangulations of an architectural tower model.
Each alternative has its own advantages and disadvantages. In gen-
eral, there is a trade-off between sharp feature fidelity and the num-
ber of irregular vertices. In Figure 15, we requadrangulate the Fan-
disk model at resolutions that are coarser than the ones in [Bommes
et al. 2009] and [Zhang et al. 2010] while maintaining all sharp

features. In Figure 17, we requadrangulate the Accessory model
in [Zhang et al. 2010] to remove all the redundant v3-v5 pairs. In
Figure 16, we explore alternative requadrangulations of a single
curved patch with two inner holes. Throughout the examples, ex-
plorations are done not only by enumerating topologies of patches,
but also by exploring different configurations of the control graphs.
The vertex positions are optimized by methods desrcribed in [Liu
et al. 2006] as a post-process.

Fig. 17: Requadrangulations of the Accessory model. Left: the input mesh
from [Zhang et al. 2010] with several redundant v3-v5 pairs and unnec-
essary v6. Middle: a requadrangulation with the same configuration of ir-
regular vertices on patch boundaries. All patches are now quadrangulated
without redundant irregular vertices. Right: an alternative with different al-
locations of the v5 on the top facades.

Fig. 18: A gallery of different quadrilateral meshes for a Shuriken. The
quadrilaterals of the model were colored in a post-process. Topological vari-
ations have distinctive, interesting patterns of mesh lines.

Art and Design: Topology is important for art and design when
the mesh lines or quad faces are visible. We show designs of pla-
nar Shuriken (Japanese dart) patterns inspired by the enumerated
topologies (Figure 18). In Figure 19, we show font designs by quad-
rangulating the interiors inspired by [Bessmeltsev et al. 2012].

Limitations and Future Work: One major limitation of our
work is that we restrict our analysis to pure quad meshes. A fruitful
avenue of future work is to analyze the topology of mixed quadri-
lateral and triangular meshes. A limitation of the enumeration al-
gorithm is that we cannot filter all redundant subdivisions early in
the process. It would be interesting to explore if there were an opti-
mal algorithm to detect all redundant efforts. We focus on examples

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



10 • C.H. Peng et al.

(a) (b) (c)

Fig. 12: Shape-space exploration on different topologies. The cap of an elliptic paraboloid is PQ meshed using twenty different topological
patterns (top row) and planarity-preserving shape-space exploration is applied on each topology such that the boundary is fixed while the
interior vertices are allowed to move. The best eight eigendirections are sampled for each topology. The results (clockwise) are ranked in
decreasing fashion according to planarity (a), circularity (b) and fairness (c). The color shows the affiliation with the topological pattern.

(a) (b) (c)

Fig. 13: Shape-space exploration of PQ meshes. For a 2D PQ mesh in the plane, six corner points are kept fixed and the remaining vertices
move freely to form 3D shapes. From thirty topological patterns, the best “bumping” shape was selected. The color coding reflects the discrete
Gaussian curvature (a) and the average kink angle between the neighboring faces (b). (c) The best explored mesh in terms of minimal kink
angle together with its planar input is shown.

Fig. 14: Exploring alternative requadrangulations of an architectural tower model. Left: the input tower model with a large number of
irregular vertices and small faces due to the computation of intersections by a professional modeling package. Second left to right: five
requadrangulations explored with our enumeration framework. The first and second both consider the hyperboloid-shaped facade on the front
as an 8-sided patch, while the former favors uniform quad size and the latter favors alignment of irregular vertices. The third alternatively
considers the front facade as a 4-sided patch, and four v3s are removed. The fourth no longer preserves the sharp feature on the right, and the
two adjacent patches are merged. It has fewer irregular vertices at the cost of less sharp feature fidelity. The fifth discards all sharp features
on the front in exchange for even fewer irregular vertices.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Exploring Quadrangulations • 11

Fig. 15: Coarse requadrangulations of the Fandisk model. Left: the input mesh from [Bommes et al. 2009]. Second left to right: coarser
requadrangulations with exact sharp feature fidelity. Note that for the one with 232 quads, we allow irregular vertices to appear on the patch
boundaries and achieve a more regular flow of mesh lines.

Fig. 16: Requadrangulations of a single curved patch with two inner holes. Left: a standard requadrangulation with four v5. Middle: an
alternative in which the interior meshing is completely regular by moving the v5 to the boundaries (two v5 are collocated as a v6). Right:
another alternative that favors uniform quad size at the cost of additional irregular vertices. The arrangement of irregular vertices significantly
influences the overall grid layout as observed from the zebra pattern rendering.

Fig. 20: Quadrangulating an organic model. Left: A triangular Bunny mesh
and a manually generated control graph based on an initial segmentation
by Variational Shape Approximation [Cohen-Steiner et al. 2004]. Right: a
quadrangulation. The marked region shows that the quality of the control
graph depends on the tessellation of the input mesh. Here, unnecessary cor-
ners are caused by jagged-edge strips.

from architecture, art, and design, in which control graphs can be
trivially generated. While our framework is applicable to organic
models, such as the bunny (Figure 20), manual efforts are required
to generate the control graph. A general and fast requadrangula-
tion method may be achievable by combining mesh segmentation
methods and our patch quadrangulation algorithm. Finally, we did
not investigate the impact of topology in simulations, e.g., FEM
and high-order surface fitting, but we hope that our work can also
have impact on these areas.

8. CONCLUSION

Here we presented a framework to explore quad mesh topologies.
The core of our work is a systematic enumeration algorithm that
can generate all possible quadrangular meshes inside a defined
boundary with an upper limit of v3-v5 pairs. The algorithm is or-
ders of magnitude more efficient than previous work. The com-
bination of topological enumeration and shape-space exploration
demonstrates that mesh topology has a powerful influence on ge-
ometry. The results illustrate that mesh topology has an impact
on the quality of the requadrangulation, especially when the mesh
lines are visible.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



12 • C.H. Peng et al.

Fig. 19: Quadrangulations of font interiors. We choose Georgia (Bold, Italy) as a challenging example for its curved, asymmetric outlines.
Left: a quadrangulation with regular interiors. However, some parts such as the left of the letter d can never be uniformly quadrangulated
without irregular vertices. Right: an alternative that favors uniform quad size at the cost of additional irregular vertices. Bottom left: 2-
coloring of the quads is possible because the meshing is regular (quads are merged when necessary). Bottom right: a third color is necessary
for quads adjacent to the v3 and v5 vertices.

ACKNOWLEDGMENTS
We thank Helmut Pottmann and the anonymous reviewers for in-
sightful comments, Alexander Schiftner and authors of [Bommes
et al. 2009] and [Zhang et al. 2010] for providing datasets, Dong-
ming Yan for an implementation of [Cohen-Steiner et al. 2004],
Yoshihiro Kobayashi and Christopher Grasso for renderings, and
Virginia Unkefer for the proofreading.

Appendix A: The Cave-Filling Algorithm

The goal of this cave-filling algorithm is to find the extended patch
of anN -sided polygon (N ≥ 0) P , P̂ , which is the minimal simple
convex patch that encloses P . P̂ is defined under the assumption
that the exterior of P , P̄ , is regular. We assume that P̄ is regular
unless otherwise specified. For brevity, the proofs of the following
theorems are provided in the additional materials.

DEFINITION 10. A boundary edge of P is projected onto an
edge in P̄ if we can find a rectangular part of P̄ with the two edges
as its two opposite sides.

Note that, due to the regularity of P̄ , a boundary edge of P either
projects onto another boundary edge of P on the opposite side, or
it projects onto an edge of P̂ .

THEOREM 11. A patch P is free of consecutive concave cor-
ners⇐⇒ every boundary edge of P projects onto an edge of P̂ .

According to Theorem 11, if a patch, P , is free of consecutive
concave corners, then every boundary edge of P is projected onto
an edge of P̂ , and boundary edges of P ’s parallel sides are pro-
jected onto parallel sides of P̂ (see Figure 5). Since P̂ is simple,
it cannot have multiple sides that are parallel to each other. Thus,
P̂ must be a simple N -sided polygon (with N being the number
of effective sides of P ) with the same lengths as the lengths of P ’s
effective sides.

Our goal is thus to transform the given patch, P , into another
patch, P ′, that is free of consecutive concave corners and has the
same extended patch as P . The process is realized by a cave-filling
algorithm that removes all caves from P .

DEFINITION 12. A path γ is straight if every interior vertex in
γ is regular. Furthermore, every interior vertex’s 1-ring neighbor-
hood is evenly divided by γ, i.e., there are two quadrilaterals on
both sides.

DEFINITION 13. A cave of P is a subset of quadrilaterals in P̄
that can be completely separated from P̄ by one straight path from
a convex corner to another boundary vertex of P . We denote such
a straight path as the closure of the cave.

THEOREM 14. There exists a cave⇐⇒ there exist consecutive
concave corners for P .

Note that identifying and removing arbitrary caves is a non-
trivial task. Caves may contain smaller sub-caves, and there is no
simple way to find the other end of the closure emanating from an
arbitrary convex corner. Instead, we take an incremental approach.

DEFINITION 15. A simple cave is a cave that is equivalent to
a simple rectangular part of P̄ . Its four corners are identified as a
convex corner of P , followed by two consecutive concave corners
of P , followed by an arbitrary vertex of P .

(a) (b)

Fig. 21: (a) Examples of possible cases of a simple cave shown as yellow
parts of P̄ . Convex corners of P are shown in blue, concave corners in red,
and non-corners in black. (b) A patch with unremovable caves.

The three possible cases of a simple cave are shown in Fig-
ure 21a. In the first two cases, the closure emanating from the con-
vex corner hits a non-corner on the opposing side. In the third case,
the closure connects two convex corners. There are no other possi-
ble cases. Note that the closure of the simple cave can be of zero
length.

THEOREM 16. A patchP has a simple cave⇐⇒P has a cave.

Due to its simple rectangular shape, a simple cave can be easily
identified, removed from P̄ , and added to P by a simple cave-filling
operation. According to Theorem 16, all caves of a patch can be
removed by iteratively exhausting simple cave-filling operations in
arbitrary order. An example is shown in Figure 22. Finally, we note

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Exploring Quadrangulations • 13

Fig. 22: Removing a complex cave of a patch by iteratively applying simple cave-filling operations. Green faces denote the latest simple cave
being filled.

that P̂ will not change during the simple cave-filling operations
according to the following theorem.

THEOREM 17. Applying simple cave-filling operations on P

will not affect P̂ .

In summary, the algorithm removes all caves of P by repeating
the simple cave-filling operations in an exhaustive manner and, if
successful, returns a cave-free patch, P ′. P ′ is free of consecutive
concave corners according to Theorem 14 and has the same ex-
tended patch as P according to Theorem 17. P̂ ′ (the same as P̂ )
is easily retrieved from P ′ since these two patches share the same
boundary structure (the number of effective sides and their lengths).
If P still has consecutive concave corners after all simple cave-
filling operations are exhausted, then the regularity assumption of
P̄ is violated and P̂ is undefined (Figure 21b). In such a case, our
algorithm reports that P cannot be extended into a regular patch.

REFERENCES

ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LÉVY, B., AND

DESBRUN, M. 2003. Anisotropic polygonal remeshing. ACM Trans.
Graph. 22, 3, 485–493.

BERKELAAR, M., EIKLAND, K., AND NOTEBAERT, P. 2004. lpsolve :
Open source (Mixed-Integer) Linear Programming system.

BESSMELTSEV, M., WANG, C., SHEFFER, A., AND SINGH, K. 2012.
Design-driven quadrangulation of closed 3d curves. ACM Trans.
Graph. 31, 5.

BLACKER, T. D. AND STEPHENSON, M. B. 1991. Paving: A new ap-
proach to automated quadrilateral mesh generation. International Journal
for Numerical Methods in Engineering 32, 4, 811–847.

BOMMES, D., LVY, B., PIETRONI, N., PUPPO, E., A, C. S., TARINI, M.,
AND ZORIN, D. 2012. State of the art in quad meshing. In Eurographics
STARS.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-integer quad-
rangulation. ACM Trans. Graph. 28, 3, 77.

BOTSCH, M., KOBBELT, L., PAULY, M., ALLIEZ, P., AND LEVÝ, B. 2010.
Polygon Mesh Processing. A K Peters, Natick, Massachusetts.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004. Variational
shape approximation. ACM Transactions on Graphics. Special issue for
SIGGRAPH conference, 905–914.

DANIELS, J., SILVA, C. T., SHEPHERD, J., AND COHEN, E. 2008. Quadri-
lateral mesh simplification. ACM Trans. Graph., 148:1–148:9.

DONG, S., BREMER, P.-T., GARLAND, M., PASCUCCI, V., AND HART,
J. C. 2006. Spectral surface quadrangulation. ACM Trans. Graph., 1057–
1066.

DONG, S., KIRCHER, S., AND GARLAND, M. 2005. Harmonic functions
for quadrilateral remeshing of arbitrary manifolds. Comput. Aided Geom.
Des. 22, 392–423.

KÄLBERER, F., NIESER, M., AND POLTHIER, K. 2007. Quadcover - sur-
face parameterization using branched coverings. Computer Graphics Fo-
rum 26, 3, 375–384.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least squares
conformal maps for automatic texture atlas generation. ACM Trans.
Graph. 21, 3 (July), 362–371.

LIU, Y., POTTMANN, H., WALLNER, J., YANG, Y.-L., AND WANG, W.
2006. Geometric modeling with conical meshes and developable sur-
faces. ACM Trans. Graph. 25, 3, 681–689.

MARINOV, M. AND KOBBELT, L. 2004. Direct anisotropic quad-dominant
remeshing. 12th Pacific Conference on Computer Graphics and Applica-
tions (PG), 207–216.

MARINOV, M. AND KOBBELT, L. 2006. A robust two-step procedure for
quad-dominant remeshing. Computer Graphics Forum 25, 3, 537–546.

MAZA, S., NOEL, F., AND LEON, J. 1999. Generation of quadrilateral
meshes on free-form surfaces. Computers and Structures 71.

NASRI, A., S. M. AND YASSEEN, Z. 2009. Filling n-sided regions by
quad meshes for subdivision surfaces. Computer Graphics Forum 28,
1644–1658.

PALACIOS, J. AND ZHANG, E. 2007. Rotational symmetry field design on
surfaces. ACM Trans. Graph. 26, 3, 55.

PARK, C., NOH, J.-S., JANG, I.-S., AND KANG, J. M. 2007. A new auto-
mated scheme of quadrilateral mesh generation for randomly distributed
line constraints. Comput. Aided Des. 39, 4 (Apr.), 258–267.

PENG, C.-H., ZHANG, E., KOBAYASHI, Y., AND WONKA, P. 2011. Con-
nectivity editing for quadrilateral meshes. ACM Trans. Graph. 30, 6, 141.

RAY, N., LI, W. C., LÉVY, B., SHEFFER, A., AND ALLIEZ, P. 2006. Pe-
riodic global parameterization. ACM Trans. Graph. 25, 4, 1460–1485.

RAY, N., VALLET, B., ALONSO, L., AND LEVY, B. 2009. Geometry aware
direction field design. ACM Trans. Graph. 29, 1, 1:1–1:11.

RAY, N., VALLET, B., LI, W. C., AND LÉVY, B. 2008. N-symmetry di-
rection field design. ACM Trans. Graph. 27, 2, 10:1–10:13.

SCHAEFER, S., WARREN, J., AND ZORIN, D. 2004. Lofting curve net-
works using subdivision surfaces. In Proceedings of the second Euro-
graphics symposium on Geometry processing. SGP ’04. 103–114.

TONG, Y., ALLIEZ, P., COHEN-STEINER, D., AND DESBRUN, M. 2006.
Designing quadrangulations with discrete harmonic forms. In Proceed-
ings of the fourth Eurographics symposium on Geometry processing. SGP
’06. 201–210.

WHITE, D. AND KINNEY, P. 1997. Redesign of the paving algorithm:
Robustness enhancements through element by element meshing. In Proc.
6 th Int. Meshing Roundtable. 323–335.

YANG, Y.-L., YANG, Y.-J., POTTMANN, H., AND MITRA, N. J.
2011. Shape space exploration of constrained meshes. ACM Trans.
Graph. 30, 6, 124:1–124:12.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2006. Vector field design
on surfaces. ACM Trans. Graph. 25, 1294–1326.

ZHANG, M., HUANG, J., LIU, X., AND BAO, H. 2010. A wave-based
anisotropic quadrangulation method. ACM Trans. Graph., 118:1–118:8.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.


