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Proofs for Appendix A

Proof of Theorem 11:

PROOF. ⇒: By contradiction. Assume that there exist two
boundary edges of P , e0 and e1, that project onto each other. With-
out loss of generality, we assume that e0 is encountered prior to e1
in a counter-clockwise boundary walk (see Def. 3). Consider the
subset of quadrilaterals in P̄ that can be completely separated from
P̄ by a straight path from the first ending vertex of e0 to the second
ending vertex of e1. We denote this subset as Q. Since P̄ is regu-
lar,Q is a subset of a parallelogram. Since e0 and e1 are opposite to
each other, the walking direction ofQ at e1 is the walking direction
at e0 plus two, implying that there exists at least a pair of consec-
utive convex corners in between. This pair of consecutive convex
corners in Q is equivalent to a pair of consecutive concave corners
in P , which contradicts the assumption of no consecutive concave
corners.
⇐: Contrapositively, if there is a pair of consecutive concave

corners, v1 and vk, we show that there exist two boundary edges
of P that project one to another. Consider the two edges (v0, v1)
and (vk, vk+1) before and after these two concave corners on the
boundary of P , respectively. There exists a parallelogram Q, Q ⊂
P̄ , with four corners as v0, v1, vk, and vk+1 in clockwise order.
Consequently, (v0, v1) projects onto (vk, vk+1).

To prove Theorem 14, we first need the following lemma:

LEMMA 18. There exists at least one simple cave adjacent to a
set of consecutive concave corners.

Fig. 2: The five sides adjacent to four consecutive concave corners.

PROOF. We denote sides adjacent to a set of consecutive con-
cave corners as si with 0 ≤ i ≤ C, where C is the number of
consecutive concave corners. s0 is the side from a convex corner to
the first concave corner, and sC is the last side from the last con-
cave corner to a convex corner. An example is shown in Figure 2.
Assume that a simple cave does not exist at both the beginning and
the end of the consecutive concave corners; otherwise, the proof
is done. This implies that s0 is longer than s2 and sC is longer
than SC−2, since the first and the last convex corner cannot em-
anate a straight path to hit P ’s boundary. This clearly cannot hold
for C = 2. For C > 2, recall that we assume that P̄ is regular;
thus, si+2 cannot be longer than si for 1 ≤ i; otherwise, si+2 will
penetrate si−1.

Proof of Theorem 14:

PROOF. ⇒: The walking direction along the boundary edges be-
fore the first end and after the second end of the closure backtracks
by at least 2, implying that there are two consecutive concave cor-
ners in between.
⇐: According to Lemma 18, there is at least a simple cave adja-

cent to a set of consecutive concave corners. A simple cave is also
a cave by definition.

Proof of Theorem 16:

PROOF. ⇒: A simple cave is also a cave by definition.
⇐: By Theorem 14⇒ we know that there will be consecutive

concave corners adjacent to a cave. By Lemma 18 we know that
there exists at least one simple cave adjacent to these consecutive
concave corners.

Proof of Theorem 17:

PROOF. Each simple cave-filling operation subtracts a rectan-
gular patch from P̄ and adds it to P . Consequently, any new edge
introduced to P is opposite to some existing edge in P and hence
P̂ remains unchanged.

Proofs of Theorem 7 and 8

(a) (b) (c)

Fig. 3: (a) Notations of a quadrangulated triangle. (b) Notations of a quad-
rangulated 2-sided patch subdivided into two triangles. (b) Notations of a
quadrangulated 1-sided patch subdivided into a triangle and a 2-sided patch.

LEMMA 19. The number of quads in a triangle with side
lengths b0, b1, and b2, when quadrangulated with a single v3, is
(2∗ b1 ∗ b2 +2∗ b2 ∗ b0 +2∗ b0 ∗ b1− b0 ∗ b0− b1 ∗ b1− b2 ∗ b2)/4.

PROOF. We denote the (topological) lengths of the three sepa-
ratrices emanated from the v3 to the three sides with lengths b0,
b1, and b2 as d0, d1, and d2 (see Figure 3a). b0 = d1 + d2,
b1 = d2 + d0, and b2 = d0 + d1 since the three separatrices
decompose the triangle into three parallelograms. The number of
quads in the triangle is d0 ∗ d1 + d1 ∗ d2 + d2 ∗ d0, which equals
(2∗b1∗b2+2∗b2∗b0+2∗b0∗b1−b0∗b0−b1∗b1−b2∗b2)/4.

LEMMA 20. Assuming that a quadrangulated 2-sided patch of
side lengths b0, b1 is subdivided into two triangles, one with side
lengths x, y, and b1 − z, and the other with side lengths y, b0 − x,
and z (see Figure 3b). The number of quads is maximized when
x = bb0/2c, y = (b0 + b1)/2, and z = bb1/2c.

PROOF. The formula for the number of quads in the 2-sied patch
can be constructed as the sum of the two triangles (Lemma 19).
It is a convex function with x, y, and z as variables. The values
at which the function is maximized can then be found by taking
partial derivatives of x, y, and z over the function.

LEMMA 21. Assuming that a quadrangulated 1-sided patch of
side length b0 is subdivided into a triangle of lengths x, y, and b0−
x− z, and a 2-sided patch of side lengths y and z (see Figure 3c),
the number of quads is maximized when x = b0/2−1, y = b0−2,
and z = 2.

PROOF. The formula for the number of quads in the 1-sided
patch can be constructed as the sum of the triangle (Lemma 19)
and the 2-sided patch (Lemma 20). It is a convex function with x,
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y, and z as variables. The values at which the function is maxi-
mized can then be found by taking partial derivatives of x, y, and z
over the function.

It is then straightforward to verify Theorem. 7 by Lemma 20 and
Theroem 8 by Lemma 21.

Comparing Parameterizations

In this section, we discuss how the choice of parameterization
methods may affect the results available to the users. Although
exhaustive enumerations are independent of the parameterization,
in practice, the temporal order of topologies being enumerated is
determined by geometric ranking heuristics and is thus influenced
by parameterization. In Figure 4, we compare the first enumerated
topologies of a bumpy circular patch parameterized by LSCM (a
conformal method) and a discrete authalic method with a fixed cir-
cular domain.

Geometric Optimization

Fig. 5: Variables in the geometric optimization.

Planarity Fairness Circularity Registration

#14

#125

#1

#12

Fig. 6: Geometric optimization vs. topology. Each column corresponds to
one specific optimization towards one geometric quality, namely planarity,
fairness, circularity and closeness to the reference object. Additionally, in
all four tests, the planarity of faces was required with a higher weight (10×)
and all the boundary vertices were constrained to be fully fixed. The meshes
on the main diagonal are the highest ranked according to a specific opti-
mization. It is interesting to see that a mesh, e.g., #125, can be best for one
optimization, but produce errors in another one.

In our selected applications, specifically architecture, planar
quad meshes are of great interest due to their manufacturing ad-
vantages. We have a configurable optimization framework that can

planarity fairness circularity registration
topology rank/value rank/value rank/value rank/value

Mesh # 14 1 / 0.0004 8 / 0.0110 90 / 0.0713 40 / 0.0078
Mesh #125 26 / 0.0009 1 / 0.0094 16 / 0.0166 25 / 0.0071
Mesh #1 3 / 0.0007 6 / 0.0109 1 / 0.0012 2 / 0.0043
Mesh #12 9 / 0.0008 28 / 0.0122 32 / 0.0303 1 / 0.0038

Table II. : Optimization ranking and objective function values for four se-
lected British museum models. Various geometric optimization objectives
were applied on a set of 130 topologies and these were ranked accordingly.
The ranking values and the values of each particular objective function are
shown.

combine multiple objective functions (described next) by specify-
ing weights in a user interface. Our geometric optimization is an
extension of Yang et al. [Liu et al. 2006]. Vertices on the boundary
can be constrained to remain fixed (cfix). Another option is to let
the boundary vertices glide along the boundary (cglide). The op-
timization is solved using Levenberg-Marquardt or Gauss-Newton
for the examples in the paper.

Planarity: For a quad with vertices v1, v2, v3, and v4, planarity
is computed as fplanarity = ∆1 + ∆2 + ∆3 + ∆4, where ∆1 =
Det(e1, e2, e3), ∆2 = Det(e1, e2, e4), ∆3 = Det(e1, e3, e4),
∆4 = Det(e2, e3, e4). The ei are unit vectors along the edges of
a quad (Figure 5 left).

Circularity: Circularity is computed as

fcircularity = max(abs(ϕ1 +ϕ3 − π), abs(ϕ2 +ϕ4 − π)). (2)

Fairness: For a valence 4 vertex (Figure 5 middle), fairness is
defined as

ffairness = (v1 + v3 − 2v0)2 + (v2 + v4 − 2v0)2. (3)

Registration Closeness: fregistration describes the similarity
of the quads to a prescribed master panel, e.g., a square with edge
length one. First, the master panel is registered to each quad by rigid
transformations. Each valence, n, vertex will correspond to n mas-
ter panel vertices pi. The registration closeness is then computed
as ‖v − p̄‖, where p̄ is the weighted average of pi (See Figure 5
right).

Smoothness: The smoothness fsmooth of a vertex v is ‖∆(v)‖,
the magnitude of the cotangent Laplacian, ∆(v) [Botsch et al.
2010].

Closeness: For a vertex, v , its distance to a reference mesh, or
closeness, is

fcloseness = ‖(v − w) · nw‖ , (4)

where w is the nearest point to v on the reference mesh and nw is
the unit normal vector at point w.

In Figure 6 we compare how different topologies perform under
changing optimization criteria. The errors for the models are given
in Table II. Again, we can observe that no single topology is well
suited to all geometric optimizations and that exploring topologies
can greatly contribute to geometric optimization problems. More
examples are shown in Figure 7.

Additional Results and Figures

An example of shape-space exploration with a fixed non-planar
boundary is shown in Figure 8. We rank the shapes according to one
geometric objective and color code the faces according to another
geometric objective. We also visualize the best shape according to
six geometric criteria. While one topology turns out to be the best

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



Exploring Quadrangulations • 3

Fig. 4: Left: the input mesh, which is a bumpy surface with an ellipse-shaped boundary. Middle and right: the first enumerated topologies
when parameterized by LSCM (middle) and the discrete authalic method (right). The 2D visualizations of the topologies after the first two
subdivisions and when fully quadrangulated are shown on top. We observe that the parameter domain of LSCM has less distortion (mainly
because it is open boundary) and the resulting first enumerated topology better approximates the input mesh.

(a) (b)

Fig. 7: Two examples of geometric optimization vs. topology. Each row corresponds to one specific optimization towards one geometric
quality, namely, from top to bottom, planarity, fairness, circularity and closeness to the reference object. Boundary vertices are fixed. The
meshes on the main diagonals are the highest ranked according to the specific optimization

in four categories, the two remaining categories are optimized by
two other topologies. The important insight from these examples is
that different geometric objectives favor different topologies.

In Figure 11, we explore three alternative low-resolution requad-
rangulations to approximate an input dome model. Note that the
three distinctive quadrangulations all share the same boundary con-
figuration. However, the densities increase with the number of ad-
ditional v3-v5 pairs, and approximation errors are reduced. This is
one example where redundant v3-v5 pairs could be desirable.
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(a) (b) (c)

(d) (e) (f) (g) (h) (i)

Fig. 8: Top: The explored meshes are ranked and sorted in a spiral decreasing fashion according to one selected geometric criterion. The color
coding visualizes the measure of a second selected criterion, i.e., (a) planarity vs. mean curvature, (b) fairness vs. kink angle, (c) circularity
vs. kink angle. Bottom: Summary of the best candidates throughout all topologies with respect to (d) planarity, (e) circularity, (f) kink angle,
(g) Gaussian curvature, (h) mean curvature, (i) fairness.

Fig. 9: The Fandisk requadrangulations rendered as glass-and-steel architecture.
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Fig. 10: We explore quadrangulations of a doughnut-shaped patch with a Tron-inspired pattern. Left: The patch is quadrangulated as a
regular band. Middle: the patch is quadrangulated with four v3-v5 pairs and geometrically optimized by Laplacian smoothing. Right: the
same topology as the middle, but geometrically optimized by techniques described in Section 8. Each quadrangulation is rendered with a
suitable pattern.

Fig. 11: Exploring alternative low-resolution requadrangulations to approximate a dome model. Left: the input dome model in high reso-
lution. Second left to right: three ways to requadrangulate the same patch (a 16-by-8 parallelogram). The first trivially quadrangulates the
parallelogram using a regular grid. However, the density is insufficient and the approximation error is high. The second and the third alterna-
tively use two and four additional v3-v5 pairs to increase the densities and reduce the approximation errors. Approximation errors, measured
by closest distance to each face of the input mesh, are visualized in the accompanying figures in the upper left corners. Topologies of each
alternative are illustrated in the accompanying figures in the bottom right corners.
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(a) (b)

(c) (d)

Fig. 12: Navigating topological variations of a TV D = 4 patch with one side of length 10 and no corners (a circle). There are infinite
topologies for such a patch even under the constraint of zero v3-v5 pairs. Thus, we only enumerate topologies up to a reasonable density
(number of quads). (a) to (c): Topological variations sorted by (a) geometric qualities, (b) densities, and (c) topology profiles. (d): Rotationally
equivalent variations are clustered and each cluster is visualized by one representative topology. All rotationally equivalent variations of the
selected cluster are shown in the sub-window. They all share the same topology profile: 1− 2− 4, 1− 2− 4, 1− 4− 4, 2− 2− 4, calculated
based on the length of separatrices shown as red poly-lines.
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Fig. 13: The decomposition into simple patches for quadrangulations of patches with various boundary configurations. Parallelograms,
triangles, and pentagons are shown as gray, cyan and yellow connected quads. The top left row shows various general 4-sided polygons
(TV D = 0), which are quadrangulated with multiple v3-v5 pairs. The middle left row shows various patches with TV D > 2, which
are quadrangulated with multiple inner v3s. The bottom left row shows various patches with TV D < −2, which are quadrangulated
with multiple inner v5s. On the right, we show quadrangulations of two examples that were also used in [Blacker and Stephenson 1991].
Comparing to their results, our enumeration finds many results with fewer irregular vertices. In fact, in the bottom right example, the number
of irregular vertices has been minimized.
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