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Fig. 1. (a) Our computational design tool can create 2D checkerboard patterns that tile a given boundary in a seamless manner, using exactly the three kinds
of black rectangles used in the Tokyo 2020 Olympics Games logo design (see Fig. 2). The pattern has a perfect 4-way rotational symmetry. By allowing each

black rectangle to scale uniformly by a different ratio, new designs in 2D (b) and 3D (c) can be created.

Checkerboard patterns with black rectangles can be derived from quad
meshes with orthogonal diagonals. First, we present an initial theoretical
analysis of these quad meshes. The analysis reveals many possible applica-
tions in geometry processing and also motivates the numerical optimization
for aesthetic and functional checkerboard pattern design. Second, we de-
scribe an optimization algorithm that transforms initial 2D and 3D quad
meshes into quad meshes with orthogonal diagonals. Third, we present a
2D checkerboard pattern design framework based on integer programming
inspired by the logo design of the 2020 Olympic games. Our results show a
variety of 2D and 3D checkerboard patterns that can be derived from 2D or
3D quad meshes with orthogonal diagonals.
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1 INTRODUCTION

We study the computational design of 2D and 3D checkerboard
patterns with black rectangles, i.e., meshes with a black-and-white
coloring of the faces for which the shapes of the black faces are
constrained to be rectangles. The white faces can either be un-
constrained or planar. Our work was originally inspired by the
Tokyo 2020 Olympics Games logos design by Japanese artist Asao
Tokolo [Committee 2016] (Fig. 2). In these 2D checkerboard pat-
terns, the black faces can be one of three types of rectangles. Rather
than generating these patterns directly, they can be derived from 2D
rhombic (quad) meshes by subdividing edges and placing one black
rectangle inside each rhombus. In particular, most of Tokolo’s de-
signs are derived from a tiling of 90°-rhombi (squares), 60°-rhombi,
and 30°-rhombi.

Generalizing these patterns to 3D leads to a very interesting class
of meshes: quad meshes with orthogonal diagonals. The theoretical
analysis part of this paper studies this class of meshes and reveals
that these meshes (and their further generalizations) have many ap-
plications in geometry processing. In this initial paper we focus on
the theory most relevant to checkerboard pattern design to justify
the proposed optimization algorithm. The most important practi-
cal aspect of these meshes is that they often lead to optimization
problems that are numerically stable and have fast convergence.

To tackle the 2D pattern design problem, we propose a computa-
tional design tool for rhombic tilings inside a prescribed boundary
with three types of tiles. We build on the Integer Programming
(IP)-based method for solving square and equilateral triangle tilings
in [Peng et al. 2018] and propose several additional components: an
accelerated strategy, extensions to control symmetries, and tools to
design admissible boundaries from vector graphics.
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Fig. 2. The Tokyo 2020 Olympic (a) and Paralympic Games (b) logos de-
sign by Japanese artist Asao Tokolo [Committee 2016] computed with our
framework.

Our paper includes three major contributions:

(1) We study the theoretical background of the geometry of quad
meshes whose faces have orthogonal diagonals. These struc-
tures have so far been used in discrete complex analysis and
are now shown to hold great potential for discrete differential
geometry. (See Sec. 3)

(2) A numerical optimization framework to transform 2D or 3D
input meshes into quad meshes with orthogonal diagonals.
(See Sec. 4)

(3) A 2D rhombic mesh design framework that includes a novel
efficient tiling algorithm based on integer programming, a
novel boundary design method, and various extensions to
control the symmetry of the patterns. (See Sec. 5)

2 BACKGROUND AND RELATED WORK
2.1 Tiling and tessellation

Many tiling problems provide a domain and tile set as input and
require that the domain should be covered such that no two tiles
overlap. The difficulty of a tiling problem depends on the boundary
and the tile set. Griinbaum and Shephard [2016] focus on studying
tilings of the infinite Euclidean plane. A popular tiling problem is
tiling a given 2D polygon with polyominos (tetris) [Karademir et al.
2016]. Despite the simplicity of polyominos, the corresponding deci-
sion problem is already NP-complete and the most natural problem
formulation uses integer programming.

While it is easy to imagine a greedy tiling algo-
rithm, it is important to consider that such an algo-
rithm may create narrow spaces that cannot be filled
with tiles from the input tile set (see inset for a failed
case with equilateral triangles and squares). This happens espe-
cially often when growing towards a boundary. Similarly, advancing
front/paving-based methods that are commonly used in meshing
([Blacker and Stephenson 1991], [White and Kinney 2007], [Park
et al. 2007]) often have problems when multiple growing fronts col-
lide. An often overlooked distinction of tiling problems is whether it
is easily possible to enumerate possible tile placements. While this is
trivial for polyominos [Karademir et al. 2016], this is difficult for tile
sets such as triangle and quads [Peng et al. 2018] as well as the rhom-
bic tile set studied in this paper. Richard Kenyon [1993] proposed
an algorithm for tiling a 2D polygon with parallelograms (includ-
ing rhombi) based on building strips between matched boundary
edge pairs. In comparison, our method offers more control over the
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results, can support polygons with holes, and incorporates triangle
tiles as an option to broaden the types of polygons that can be tiled.

2.2 Rhombic Meshes

A more general form of the rhombic-tiling problem is the modeling
of rhombic meshes. A closely related concept is a discrete Chebyshev
net [Chebyshev 1878], which has been extensively applied in textile
models ([Adkins 1956; Aono et al. 1996; Pipkin 1986; Rivlin 1964,
1997; van West et al. 1990]) and computer graphics ([Garg et al.
2014]).

2.3 Architectural geometry

Checkerboard patterns appear in architecture mostly as decorative
elements, sometimes on panelizations of flat or cylindrical facades,
but to our knowledge not on more general curved skins. However, a
significant portion of research in architectural geometry deals with
freeform structures from flat panels (see [Pottmann et al. 2015] for
an overview). Most closely related to our paper is research on the
case where the panels are quads which are as close as possible to
rectangles. From a mathematical perspective, these structures are
discrete principal curvature parameterizations of surfaces [Bobenko
and Suris 2008], which include circular and conical meshes as impor-
tant cases [Liu et al. 2006; Pottmann et al. 2007]. It is a contribution
of the present paper that one can efficiently compute checkerboard
patterns whose black faces are precise rectangles, while the white
quads are planar and just close to rectangles.

2.4 Fabrication

In fabrication, the use of congruent elements is beneficial for ease
of assembly and cost reduction. Examples include Lego block-based
modeling ([Mueller et al. 2014], [Luo et al. 2015]) and the use of
universal building blocks for cost-efficient 3D printing [Chen et al.
2018]. A major reason is that the building blocks can be manufac-
tured at lower cost due to the fact that rectangular elements pack
more easily into square or rectangular sheets of material. Packing
problems are also related to tiling as they enforce the non-overlap
constraint, but they do not have a constraint to cover the entire
domain [Chen et al. 2015].

3 GEOMETRY OF CHECKERBOARD PATTERNS WITH
BLACK RECTANGLES
3.1 Control mesh

A checkerboard pattern in 2D or 3D can be con-

structed from a quad mesh C (called control mesh) "
by edge midpoint subdivision (see inset). This is

an immediate consequence of the intercept theo- "
rem (or Varignon’s theorem [Var 1731]): the edge

midpoints of a quad form a parallelogram whose edges are parallel
to the diagonals of the quad. Hence, by performing subdivision on
C, we obtain a checkerboard pattern where the black faces are par-
allelograms and the white faces are arbitrary (non-planar) polygons.
To restrict the black faces to rectangles, we require that all quads
in C have orthogonal diagonals. We therefore use a control mesh
to generate seamless checkerboard patterns of arbitrary topology.
We can easily show that a control mesh exists for any checkerboard
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Fig. 3. Two control meshes obtained from the same checkerboard pattern
are shown in (a) and (b). The red and blue lines denote the first and second
diagonal mesh. While the two control meshes have different shapes, the
corresponding diagonal meshes are congruent and related by translations.

pattern with black rectangles if the pattern is simply connected:
given a rectangle, we can choose an arbitrary point p; as a vertex of
a control quad and by consecutive reflection at the four vertices we
return to p1, which again follows from the intercept theorem. This
process can be continued over a checkerboard pattern and there will
be no closure problems as long as the pattern is simply connected.

To better understand the relation between control mesh and the
pattern resulting from edge midpoint subdivision, it is useful to
consider the two diagonal meshes D1 and D3 of C (see Fig. 3). Choos-
ing another starting point p; = p1 + v to construct another control
mesh C’ for the same pattern, we see immediately that the diagonal
mesh which contains the vertex p; is translated by the vector v,
while the other diagonal mesh is transformed by a translation with
vector —v. Hence, the control mesh is almost uniquely determined,
up to opposite translations of the two diagonal meshes. One can
arbitrarily translate the two diagonal meshes and always obtain a
checkerboard pattern by computing the midpoints of those vertex
pairs in the diagonal meshes which are connected in the control
mesh.

More generally, we obtain an entire family of checkerboard pat-
terns via fixed affine combinations ADq + (1 — A)Dy. This family
of solutions is useful for design (see Fig. 4), but for studying the
patterns it is sufficient to consider midpoint subdivision (A = 1/2).

Summarizing, we obtain a checkerboard pattern with black rect-
angles via edge midpoint subdivision of a quad mesh in which each
face has orthogonal diagonals. This works in 2D and 3D.

3.2 Constraints on the black rectangles and maps between
surfaces

We get insight into our patterns when we relate them to maps.
Two patterns Pj, P, with the same combinatorics allow us to set
up a one-to-one correspondence between their vertices, edges, and
faces. Now the patterns can be seen as discrete surfaces Sy, Sz, with
the correspondence setting up a discrete map between S; and S.
These two surfaces may approximate the same underlying smooth
reference surface. If one pattern P; lies in the plane, we can view P;
as a parameter domain for P,. Having only one pattern P, we may
use part of a regular square grid as parameter domain P; in areas of
regular combinatorics of P;.

Let us assume that the patterns P;, Py discretize a smooth map p.
Then, each pair of corresponding rectangles is related by an affine
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map which is a discretization of the derivative map of y. This means
that first order properties of u are seen in the rectangles.

Consider the mapping from part of a regular square grid P; to a
combinatorially regular part of a pattern P,. Due to the rectangles
in the pattern, we can view P; as a surface parameterization with
orthogonal iso-parameter lines. It is not obvious how to express
orthogonality of a surface parameterization in the standard discrete
setting when working with a single quad mesh. In our approach, it
is trivial: We just require orthogonality of diagonals in the control
mesh (associated edges in the pair D1, D). The simplicity comes
from the mesh pair.

Note that the rectangles are aligned with principal distortion
directions of p. This is great if one wants to involve the field of
principal directions in a design or modeling task. It may not be ideal
if we want to optimize mappings where the principal distortions
are involved, but their directions do not matter. Selecting a combi-
natorics of Pq, P, would mean selection of the combinatorics of the
network of principal distortion curves. However, principal distor-
tions are not well defined if the map is conformal (angle preserving).
Fortunately, conformal maps are the most interesting ones in our
context, since we would like to have just a few shapes of rectangles,
for example squares only.

Recall that the diagonals in the control mesh are parallel to the
edges of rectangles and twice as long. Hence, we can control the
map p between two patterns with the help of the underlying control
meshes C1, Cy, which should have orthogonal diagonals.

a. The map y : P; — P is discretely conformal if corresponding
rectangles have the same aspect ratio, i.e., corresponding
diagonals in faces of the control meshes have the same ratio
of lengths.

b. The map u : Py — P; is a discrete isometry if corresponding
rectangles are congruent and hence corresponding diagonals
of the control meshes have the same length.

We have here a form of discrete conformal equivalence, which has
been studied in mathematics in connection with discrete complex
analysis [Bobenko and Skopenkov 2012; Bobenko and Giinther 2017;
Kenyon 2002; Skopenkov 2013]. However, in 3D and for geometry
processing, most work has been based on circle patterns and pack-
ing ([Kharevych et al. 2006; Stephenson 2005]) and especially on
triangle meshes. For those, a beautiful theory of discrete conformal
geometry has been developed, including advanced topics such as re-
lations to hyperbolic geometry and uniformization (see, for example,
[Bobenko et al. 2016; Gu et al. 2018a,b; Gu and Yau 2008; Springborn
et al. 2008]). There are many applications of this theory in Computer
Graphics and beyond. We just mention parameterization, texture
mapping, surface deformations, Willmore flow [Crane 2013] and
fabrication with auxetic structures [Konakovi¢ et al. 2016]. For an
introduction into this area and an overview, we refer to [Crane
2019].

The present approach to discrete conformal equivalence is very
easy to understand and to implement. One may not even look at the
final checkerboard pattern, but just at the pair of diagonal meshes
D1, Dy, which are coupled through orthogonality and obvious rela-
tions on edge lengths.
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Fig. 4. (a1) The control mesh for the Tokyo 2020 Olympics Games logo design. (a2) to (a4): checkerboard patterns generated from the same control mesh but
with different A for the interpolation of the two diagonal meshes. (a2) is the logo (A = 0.5). (b1) and (b2): Two 3D checkerboard patterns generated from the

same control mesh but with different A.
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Fig. 5. (a) A pattern from squares, shown with control mesh and the two diagonal meshes, represents a discrete conformal parameterization. Optimizing
this pattern for congruent squares, yields a discrete developable surface (b,c), which has a crumpled appearance without (b) and smooth appearance with a

fairness term (c).

For theoretical studies and other applications beyond the patterns
in this paper, there is a reason to prefer the control mesh with the
pair D1, Dy over the final pattern. Both meshes D1, D, discretize the
same type of mapping as the pattern does. However, the pattern
lacks some fairness due to the parallelism of opposite sides in the

rectangles. This effect is not seen in the diagonal meshes (see Fig. 6).

If one of two isometric patterns Pi, P2 is in 2D, the other one
must represent a developable surface. In particular, patterns from
congruent squares or rectangles are discrete developable surfaces
(see Fig. 5). Their control meshes are quad meshes with orthogonal
diagonals of constant length and constitute a new practically useful
discretization of developable surfaces. They provide an alternative to
recent work by Rabinovich et al. [2018a; 2018b] and will be studied
in detail in future research.

We can use known results on smooth conformal geometry to
learn about the behavior of checkerboard patterns under desired

design changes and mappings. Important are the following facts.

Two simply connected surfaces can always be mapped onto each
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other by a conformal map. One can even prescribe three correspond-
ing points on their boundaries (Riemann mapping theorem). Also
any two closed surfaces of genus zero are conformally equivalent;
again one can prescribe three correspondences. Closed surfaces of
higher genus or domains which are not simply connected can be
conformally mapped onto each other only if they belong to the same
conformal class (see e.g. [Gu and Yau 2008]).

Let us summarize typical tasks that can be solved. In all cases, we
rely on known facts from the smooth setting:

(1) Mapping a simply connected pattern P; onto a pattern Py by
allowing all rectangles to scale uniformly (with an unspecified
scale factor per rectangle) and by specifying a target boundary
(see Figures 19, 21, and 22). Here, one may specify three
correspondences on the boundary.

(2) Same as above for patterns on closed surfaces of genus zero
and three correspondences.



Fig. 6. A checkerboard pattern with black rectangles and white planar quads
represents a discrete principal curvature parameterization. While the pattern
(a) lacks some fairness (e.g., the red polyline), the diagonal meshes of the
control mesh, one shown in (b), do not suffer from this problem and are also
discrete principal curvature parameterizations.

(3) For more boundaries or higher genus, one needs to provide
more flexibility. One cannot specify a target surface precisely,
but optimization will lead towards a possible target.

(4) Mapping a pattern P; by keeping the rectangles congruent
will only work if the target surface for P, is isometric to P;.
Thus, one either needs to know that original surface and
target surface are isometric or explore possible target shapes
through optimization (Sec. 4). A planar pattern can be mapped
isometrically only onto a developable surface.

(5) Taking an arbitrary quad mesh as a control mesh C, one
can optimize for a pattern with all rectangles having the
same aspect ratio. If C has the topology of a disk or sphere,
this can be done without changing the shape of the surface
represented by C; the bunny in Fig. 4 has been generated in
this way. However, one has to expect a shape change for other
topologies (see Fig. 24). This is so since the combinatorics of
C already determines the conformal class, which needs not
contain the surface represented by C.

3.3 Planar white quads: discrete principal curvature
parameterizations

For certain applications, e.g., architecture, it is very useful if not only
the black faces, but all faces are planar. We simplify this require-
ment to only constrain the white quads to be planar and exempt
white faces with more than four edges from this requirement. This
is achieved if and only if the two diagonal meshes D1, D, in the
control mesh are composed of planar quads (PQ meshes). A PQ
mesh discretizes a so-called conjugate parameterization of a sur-
face [Bobenko and Suris 2008], but here we also have orthogonality.
The only orthogonal conjugate parameterizations are those where
the iso-parameter curves are principal curvature lines. This means
that a pattern P from black rectangles and planar white quads is a
discrete principal curvature parameterization, or shortly, a principal
mesh. Both the pattern P and the two diagonal meshes Dy, D; of the
control mesh are principal meshes (see Fig. 6).

Principal meshes have received a lot of interest, both within
discrete differential geometry [Bobenko and Suris 2008] and ap-
plications such as architecture (see e.g. [Liu et al. 2006; Pottmann
et al. 2007]). Here we have a new approach to principal meshes. We
briefly outline some advantages and show that this is going beyond
the currently used discretization.

Checkerboard Patterns with Black Rectangles « 171:5

Fig. 7. A checkerboard pattern with black rectangles and planar white
faces and both diagonal meshes of the control net, shown in blue and
red, are discrete principal curvature parameterizations (a). The diagonal
mesh pair allows us to define vertex normals such that connected vertices
possess coplanar normals (b). This property facilitates the layout of support
structures in architectural applications.

In our approach, the discrete conjugacy, a second order property,
constrains the faces of the diagonal meshes D1, D2, which are not
relevant for the expression of first order properties. This separation
of first and second order properties in our discrete structure is a
big advantage. Note that this is not present in the traditional way
of working with a single mesh. Here, one has invented various
definitions, such as circular and conical meshes, but these are much
less obvious to obtain [Bobenko and Suris 2008; Liu et al. 2006;
Pottmann et al. 2007].

We can enforce even stronger conditions in a simple way. An
interesting example concerns checkerboard patterns composed of
white planar faces and black rectangles with a fixed aspect ratio
(Fig. 8). As we know from the previous subsection, we have to add
the conformality constraint discussed above, i.e., in each quad of
the control mesh diagonals have the same ratio of lengths. Such
patterns discretize surfaces with a conformal principal curvature
parameterization. Known examples of these so-called isothermic
surfaces include quadrics, rotational surfaces and surfaces with con-
stant mean curvature, in particular minimal surfaces. Isothermic
surfaces have been studied very well in differential geometry, both
in the smooth and in the discrete setting [Bobenko and Suris 2008].
However, the known discretizations require more sophistication
than the present scheme.

Let us add a few basic facts about the new type of principal
meshes: Here, we first consider only D1, D, and not the pattern.
In a diagonal mesh pair (D1, D2) each face in one quad mesh is
associated with a vertex of the other. This allows us to define unique
discrete surface normals at vertices of D; as normals to the associated
face of the other diagonal mesh (see Fig. 7). Consider an edge e}j
of Dy (red) connecting vertices v;,v;. The normals n;, nj at these
vertices are orthogonal to the corresponding faces F;, F; of D2 (blue)
which share an edge e?j. Since the associated edges e}j and e?j
are orthogonal, all three lines n;, nj, egj are orthogonal to el?j and
therefore lie in a common plane. Hence, along each mesh polyline
of Dy (and D3 ) consecutive normals are co-planar and thus form a
discrete developable surface. This is a discrete version of a result
from the smooth theory, namely that the normals along a principal
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Fig. 8. Starting from an initial control mesh (a), we optimize for a pattern (b)
where all black quads are squares and white quads are planar. The generated
surface is a discrete isothermic surface.

curvature line form a developable surface. For architecture, these
discrete normal developables define torsion-free support structures
and are useful for multi-layer constructions; see [Pottmann et al.
2007].

Remark. A special instance of the discussed pairs (D1, D) of
principal meshes has been described in connection with the focal
geometry of circular and conical meshes [Pottmann and Wallner
2008]. In that case, one has corresponding discrete Gauss images
which are polar with respect to the unit sphere S? (one is inscribed,
the other circumscribed). For our more general pairs of principal
meshes (Dj, D2) one can find parallel meshes (D7, D}) which ap-
proximate the unit sphere $? and are transformed into each other
by polarity with respect to S?. These discrete Gauss images can be
used to define discrete curvatures and a discrete shape operator. As
a derivative of the Gauss map, the discrete shape operator is seen
explicitly in corresponding rectangles of patterns associated with
(D1, D2) and (D7, D3). We leave more on that for future research, as
it goes far beyond the scope of the present paper.

4 CHECKERBOARD PATTERN OPTIMIZATION

In this section, we describe how to optimize an input quad mesh to
generate a quad mesh with orthogonal diagonals in 2D or 3D. As
input we consider an initial control mesh C, given as quad mesh
(V, E, F). The required checkerboard pattern can be derived directly
from the optimized control mesh C by subdivision. As optional
input we consider an aspect ratio for the quad diagonals that can
be specified for each quad separately. This aspect ratio directly
translates to the aspect ratio of the black rectangles in the derived
checkerboard pattern. Further, it is possible to optionally require
the white faces of the derived checkerboard pattern to be planar as
well.

Variables . We denote the vertex coordinates of the control mesh
Casvj,i € Vand the vertex normal vectors asn;, i € V. The vectors
n; are also the face normals of the white quads.

Diagonal Orthogonality. For all the quads of C, we require their
two diagonals to be orthogonal. This is the fundamental constraint
for checkerboard patterns with black rectangles. We write the con-
straint as an energy term

Eorth = Z (Vi1 = Vk3) - (Vkz = Vi), 1
keF
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where k1, k2, k3 and k4 are the vertex ids of the face k.

Diagonal Ratio Constraint. The ratio of the two diagonal lengths
of a quad in the control mesh can be constrained by the energy term

Eratio = Z((Vkl = Vi3) - (Vi1 = Vi3)—
keF (2)

2 2
rk(sz = Via) - (Vk2 = Via))s
where ry is the ratio of two diagonal lengths |vi V3| and [Viovigl.

Planarity. The black rectangles derived from the control mesh
are automatically planar. The following constraint encodes the op-
tional planarity for white quads. The planarity of white faces can
be expressed by requiring the neighbouring vertices of each vertex
v; to form a planar quad. We use the same planarity formulation
of [Tang et al. 2014] and [Jiang et al. 2015],

Eptan =, Y (vi=vj)-n)?+ Y (mi-mi =172 (3)

i€V (i,j)eE i
where n; are the face normals of the white quads.

Objective. The objective function is written as combination of the
three energy terms:

E = Eypp + MErazio + /12Eplan' )

To make the parameter settings between different models compara-
ble, we scale the input meshes such that their average edge length is
1. The energy terms Erqtio and Epj,y, are optional, so the weights
A1 and Ay are set to 1 or 0 depending on the applications. We imple-
mented the optimization using the Levenberg-Marquardt algorithm.
We also experimented with simpler optimization algorithms such
as standard gradient descent but observed that the results tend to
get less smooth. Only for the pattern in Fig. 5 (c) we used as addi-
tional regularizer a fairness energy applied to the diagonal meshes,
namely the standard sum of squared 2nd difference vectors of the
mesh polylines.

Algorithm extension. To achieve smoother control quad meshes,
the algorithm can be extended by replacing the gradient g in the
LM algorithm by a modified descent direction d which satisfies the
equation Ld = g, where L is the graph Laplacian matrix. This scheme
essentially takes a gradient step with respect to a Sobolev-like metric,
rather than the ordinary L? metric. The motivation is that the norm
used to define the gradient should account not only for the change
in position, but also the change in normals. A similar strategy can
be found in [Martin et al. 2013; Schumacher 2017]. The modified
algorithm usually takes significantly more iterations to converge
and each iteration is slower because of additional calculation for
the modified descent direction. Examples comparing the algorithm
before and after the modification are shown in Fig. 9 and Fig. 10.
Fig. 10 demonstrates a case where the original algorithm produces
quite noisy results while the extended algorithm produces more
smooth ones when the input mesh is far from having orthogonal
diagonals.

In the next section we will show how a variety of different checker-
board patterns can be generated with different parameter settings.



@
Fig. 9. Diagonal orthogonality optimization of a torus model. (a) Input
mesh with elongated quads. (b) and (c) are the optimized meshes by LM
and the extended algorithm. We take a random small part of the meshes

and compute their Gauss images using the corresponding face normal of
black quads. (b) takes 0.15 seconds and (c) takes 72.03 seconds to compute.

Fig. 10. Diagonal orthogonality optimization. (a) Input mesh. (b) and (c)
compare the optimized meshes by LM and the extended algorithm. (b) takes
1.25 seconds and (c) takes 60.35 seconds to compute.

5 2D CHECKERBOARD PATTERN DESIGN

5.1 Rhombic tiling using integer programming

Here, we describe our basic IP-based method for tiling a simply
connected 2D domain with rhombi of angles 90°, 60°, and 30°. We
denote such tilings as rhombic tilings. Our proposed solution builds
on the recent tiling algorithm for triangles and quads [Peng et al.
2018], and we discuss the differences at the end of this section. We
review key properties first.

There are twelve possible directions for the half-edges in a rhom-
bic tiling. After fixing one half-edge’s direction, we can encode
each half-edge’s direction as an integer € [0, 11]. Assuming an edge
length of 2, the coordinate vectors of vertices must have the form:

v =(A+BV3,C+DV3), (5)

and can be encoded as discrete 4D coordinate, (A, B, C, D). Every 4D

coordinate can be projected to a 2D coordinate by the "Projection
1" proposed in [Peng et al. 2018] as follows (we slightly modify the
projection by dividing coordinates by 2):

(A,B,C,D) — (x,y) = (A+2B,C + 2D). 6)

We denote this 2D plane P2. Note that multiple 4D coordinates can
be mapped to the same 2D coordinate in P2.

We call a boundary admissible for a rhombic-tiling if it is a simple
polygon that has edges of length 2 and turning angles as multiples of
30°€ [0,330]. Admissible is a necessary but not sufficient condition
for a boundary to be feasible for a rhombic-tiling.

As input, we assume that an admissible boundary is given as a
counterclockwise loop of half edges. As initialization, we embed the
boundary in the Euclidean plane and P? such that the first boundary
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half-edge is in the 0-th direction and starts at (0, 0) (see Fig. 11 (a)
for an example).
There are two main steps of our method as follows:

(1) Tile enumeration. Enumerate a superset S of potential tile
placements within the boundary.

(2) Tiling computation. Solve an IP problem to select a subset of
potential tile placements in S that covers the bounded domain
without gaps nor overlaps.

In the following, we describe these steps including an extension
to other types of triangular tiles. In subsequent subsections we
present mechanisms for local and global control as well as tools for
admissible boundary design.

5.1.1 Tile enumeration. We present the following analysis to moti-
vate why the tile enumeration and the subsequent tiling computa-
tion can be done in P? alone. First, every rhombic tiling embedded
in P? uniquely maps to a rhombic tiling embedded in E2. This can
be shown by establishing that all paths from the origin to a vertex
are consistent. The Euclidean coordinate of a vertex is then obtained
by summing up the 4D vectors of the half-edges along the path.
Further, all vertices that could be part of a tiling inside the domain
in E? map to a vertex inside the domain in P2.

In P2, a unique tile placement is defined by its tile type (one of
three types of rhombi), the 2D coordinate of a fixed vertex in P2,
and its orientation. As shown in Fig 12, there are three, six, and
six possible orientations for the 90°-rhombi, 60°-rhombi, and 30°-
rhombi, respectively. We can exhaustively enumerate all possible
tile placements by iterating over every point inside the admissible
boundary in P2.

5.1.2  Tiling computation. In order for a tiling to be valid, we can
simply check that a small circle around each interior vertex is cov-
ered by tiles without overlap. For boundary vertices, the subset of
the circle inside the domain has to be covered. This test is sufficient,
because a hole in the tiling has to touch at least one interior or
boundary vertex. Due to the nature of our tile set, we can simply
slice each circle into 12 slices and check the coverage of these 12
discrete slices.

We denote the selection of the i-th potential tile placement by a
Boolean variable T;. For every tile placement, we enumerate slices
that are covered by the tile. Conversely, for a slice s;,0 < j < N, N
is the number of slices in the bounded domain, we enumerate tiles
that cover s; and denote these tiles as Tjk,0 < k < Kj, Kj is the
number of tiles that cover sj. We solve the following IP feasibility
problem:

find Ti,0<i<|S|,
s.t. ZTj’k =1,Vs;. 7
k

Solving Eq. 7 gives us a selection of the potential tile placements
such that every slice in the bounded domain is covered exactly by
one selected tile. An example is shown in Fig. 13 (a). An exhaustive
enumeration of all possible solutions can be done by solving the IP
multiple times, each time banning all previously retrieved solutions.

Note that Eq. 7 can be infeasible for certain admissible boundaries,
which can be helped by adding triangles to the tile set.

ACM Trans. Graph., Vol. 38, No. 6, Article 171. Publication date: November 2019.
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Fig. 11. Pipeline of 2D checkerboard pattern generation. (a) An input admissible boundary in E2. (b) The admissible boundary is mapped to the 2D projection
space P2. (c) A tiling in P? is computed such that all slices around vertices are covered exactly by one tile. (d) The tiling in P? is mapped back to E? and then a

corresponding checkerboard pattern is created by subdivision.
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Fig. 12. The three, six, and six possible orientations for the 90°-, 60°-, and 30°-rhombic tiles.

¥4

Fig. 13. (a) A covering of slices by tiles. Slices covered by the same tile are
drawn with the same color. (b) Adjacent tile combinations that lead to a
smooth-looking pattern.

5.1.3 Triangle tiles extension. In this paper, we treat triangle tiles
as singularities and their occurrences are minimized. We can add
triangle tiles (equilateral triangles of side length 2 in E?) and revise
the IP problem:

find T;, 0 < i< |SHTE,

min. ZT;ri,0£x<Nt”- ®
8

x
s.t. ZTj’k = 1,V8j,
k

where S*7! denotes the superset of potential tile placements includ-
ing the three kinds of rhombi plus triangles. T*"* denote triangle
tile placements and N;,; denotes the number of them. Examples of
tiling with triangle tiles are shown in Fig. 15.

5.2 User control for the pattern style

We propose five schemes for users to retrieve tiling solutions with
certain desired qualities.
a) Symmetry. We support two types of symmetry constraints:
(1) Reflective or 180°-rotational symmetry with respect to the
x—, y—, and 45°-axis in the Euclidean plane.
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(2) Arbitrary reflective or rotational symmetry other than the
ones specified above.

For (1), this is a special case where we can generate a scalar field
at integer coordinates in P? with the same symmetry. We identify
paired tile placements that have matching scalar values at their
vertices and then add the following constraints to Eq. 8 to ensure
that paired tile placements must be selected at the same time:

Tx,0 = Tx,1, V paired tile placements Ty o and Ty, 1. )

For (2), the challenge is that a scalar field matching the symmetry
cannot be established in P2. Still, we can identify paired boundary
edges by the symmetry and therefore paired tile placements among
the tiles adjacent to the boundary. Inspired by this, we solve the
tiling problem in a way that is similar to an advancing-front tiling
method (see Fig. 16). At each iteration, paired tile placements are
identified among the tiles that are adjacent to the advancing front.

Examples of symmetric tiling results are shown in Fig. 14.

b) Global style. We can optimize for two distinct visual styles
of checkerboard patterns generated by rhombic-tiling: fractured
and smooth (see Fig. 14 (d) and (e)). To do so, we identify several
combinations of adjacent tile placements that lead to a smooth-
looking pattern: 1) two 90°-rhombi, 2) one 90°-rhombus and one
60°-rhombus, and 3) two 60°- or 30°-rhombi put together and one
obtuse corner is adjacent to one acute corner (see Fig. 13 (b)). For
each combination of tiles T, and Ty, we create a Boolean variable,
Cp,q> and constrain it to be true if and only if both T, and T are
selected. This is done by adding the following constraints for each
combination to Eq. 8:

0<Tp+Ty—2%Cpq <1 (10)

To optimize for the fractured or the smooth styles, we add the
positive or negative sum of all combination Boolean variables to
the objective function in Eq. 8.
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Fig. 14. Checkerboard patterns with a (a) left-right reflective symmetry, (b) left-right and up-down reflective symmetries, (c) three-way rotational symmetry,
and (d and e) four-way rotational symmetry. (d) and (e) are further optimized with the fractured and smooth global styles, respectively.
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Fig. 15. Tilings generated with (a) 90°-rhombi and triangle tiles, (b) 30°-
rhombi and triangle tiles, and (c) 60°- and 30°-rhombi and triangle tiles.

4= (b

Fig. 16. Generating a symmetric tiling with a reflective symmetry from the
top-left to the bottom-right corners. We solve tiling in three iterations. In
each iteration, paired edges of the current advancing front are drawn with
the same color. Tiles solved at each iteration are drawn in grey.

c) Local control. It is straightforward to enforce or forbid cer-
tain tile placements to appear as hard constraints added to Eq. 8.
Alternatively, they can be added as a weighted sum to the objective
function of Eq. 8 as a soft constraint. One such example are the
"eyes" of the Tokyo 2020 Mascots design shown in Fig. 18.

d) Holes. To create holes in the tiling, we first identify points
inside the specified hole regions. Then we remove potential tile
placements and coverage constraints for these points.

e) Admissible boundary design. Many simple admissible bound-
aries such as ellipses (including circle), rectangles, and triangles, can
be drawn by hand as a sequence of half-edge directions € [0, 11].
One can also make admissible boundaries using interactive edit-
ing operations. See Fig. ?? and ?? in the additional materials for
examples.

In summary, the rhombic-tiling IP problem takes the form:

find T, 0 < i< |SHTE,
min. W,ZT;”' + WSZCM +WCZTC,
x P.q c
s.t. Z Tj,k =1V Sj» 11)
‘ Eq. 10,V Cp,q,

T, = 1, VY enforced tiles Ty,
Tp = 0, V forbidden tiles Tj,.

where W;, W, and W, are the weights for the triangle-minimization,
global-style, and soft local-control terms. T, denotes the tiles for soft
local-control constraints. Note that Ti"? =  and ST/"% = S when
triangle tiles are excluded.

5.2.1 Comparison to [Peng et al. 2018]. In short, the IP formula-
tion in [Peng et al. 2018] selects a subset of all possible potential
edge placements within the admissible boundary that satisfies the
requirement that at every potential vertex location, adjacent edges
must join in exactly one of the allowed "configurations", which are
defined by the sequences of corner angles in counterclockwise order
without rotational symmetry. There are 29 such configurations for
interior vertices. This approach is not feasible for our rhombic-tiling
problem for two reasons. First, the numbers of such configurations
with our three kinds of rhombic tiles become prohibitively large.
Second, simply regulating ways edges can join at each vertex is no
longer enough as two adjacent triangle tiles that occupy the space
of a single 60°-rhombus cannot be prevented.

By experiments, we also find that our method is significantly
faster than Peng et al’s for solving the same regular triangle-quad
tiling problem. Solved on a machine with nearly identical specs, we
solved the tiling problem in Fig. 7 (c) of [Peng et al. 2018] (using
only 90°-rhombic and triangle tiles) in 0.84 sec as compared to 21.32
sec reported in their paper, which is about 25 times faster.

6 RESULTS AND APPLICATIONS
6.1 Implementation and running times

The rhombic tiling computation is solved by Gurobi on a machine
with Intel Xeon 16 Core 2.30GHz CPU and 128GB RAM. We list the
statistics and timing numbers in Table 1.

The running times for the geometric optimization in Sec. 4 of
our examples are all under one second using the basic geometric

ACM Trans. Graph., Vol. 38, No. 6, Article 171. Publication date: November 2019.
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Fig. 17. Variations of the Tokyo 2020 logo design. (a) A thicker version of
the ring-shaped Olympics logo with the same 3-way rotational symmetry.
(b) A remake of the Paralympic Games logo with a "fractured" global style.
(c) A bigger design with a left-right reflective symmetry.

Table 1. Rhombic tiling computation statistics. #PT denotes the number of
potential tile placements. #Tiles denotes the number of tiles in a solution.

Model #PT  #Tiles  Time Model #PT  #Tiles  Time
Fig. 1* 10907 240 1.46s Fig. 1 10907 240 23.75s
Fig. 14 (2) 2347 60 055s | Fig.15(c) 2566 76 0.24s
Fig. 17 (a) 1940 57 2.87s | Fig. 17(b) 1413 45 12.2s
Fig. 17 (c) 7357 180 49.61s | Fig. 18 (a) 8128 211 5.896s
Fig. 18 (b) 3999 96 0.73s Fig. 18 (c) 4832 124 1.27s
Fig. 20-1% 2901 71 1.22s Fig. 20-2 3866 75 3.05s
Fig. 20-4 3755 68 0.97s Fig. 20-5 3606 89 1.19s
Fig. 21 (a) 11743 206 4.27s Fig. 21 (b) 55067 1068 53.47s
* Without "smooth” global style. I In left to right order.

optimization with an Intel Xeon E5-2687W 3.0GHz machine without
parallel processing or other acceleration techniques. The objective
functions converge to less than 1e-20 within 10 iterations.

6.2 2D Patterns with three types of rectangles

We begin by showcasing a gallery of 2D checkerboard patterns
to complement the Tokyo 2020 logo design. Recall that patterns
generated by our rhombic-tiling method (Sec. 5) consist of exactly
the same kinds of rectangles as in the Tokyo 2020 logos. In Fig. 17, we
propose several variations of the two logos. In Fig. 18 (a), we show
a checkerboard version of the five-ringed symbol of the Olympics
Games. In Fig. 18 (b) and (c), we show two portrait-like patterns
inspired by the Tokyo 2020 Mascots. In Fig. 20, we show more
2D pattern designs with boundaries generated from reference 2D
shapes. To reduce clutter, we show the corresponding rhombic-tiling
meshes in the additional materials.

A rhombic tiling generated by our 2D method gives a 2D control
mesh (Sec. 3.1) with which a family of checkerboard patterns with
the same number of types of rectangles can be computed as AD; +
(1 — A)D3, where D; and D are the two diagonal meshes. When 4
equals 0.5, the rectangles equal to the ones used in the Tokyo 2020
design. In Fig. 4 (a), we show other variations.
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6.3 2D Patterns with rectangles of fixed aspect ratios

More general 2D checkerboard patterns can be generated by the
numerical optimization scheme described in Sec. 4. We take a 2D
rhombic tiling as input and prescribe three types of aspect ratios
and changing the boundary. Examples are shown in Fig. 19.

6.4 2D patterns mapped to surfaces

The numerical optimization scheme also enables us to map 2D
checkerboard patterns to arbitrary 3D surfaces while requiring that
each type of rectangles have the same aspect ratio (with possibly
different sizes). See Fig 21 and Fig. 22 for designs enabled by this
scheme.

6.5 Checkerboard patterns from quad meshes

Another way to create 3D checkerboard patterns is to directly take
a quad mesh of a reference surface as the control mesh and then
optimize for the orthogonality of quad diagonals. We tried two
schemes to assign the types of black rectangles - 1) all of them are
squares and 2) random assignment. For both schemes, we find that
the numerical optimization converges very quickly for almost any
input quad mesh. See Fig. 4 (b), Fig. 22, Fig. 23 (c), and Fig. 24 for
examples.

6.6 Checkerboard patterns with planar tiles

In Fig. 23 and Fig. 25, we show 3D checkerboard patterns with the
additional constraint that all white quad faces are planar. This is
a major advantage in architectural geometry as planar quads are
strongly preferred.

6.7 Discussion and limitation

We believe that our integer programming approach scales to smaller
and medium scale designs as demonstrated in the paper. For bigger
scale designs, having symmetry constraints helps to reduce compu-
tation cost (our biggest design, Fig.21 (b), has 1068 tiles). However,
integer programming does not scale to very large designs, e.g. we
failed to generate designs of around 1000 tiles without symmetry.
This is an inherent limitation of integer programming. The numeri-
cal optimization works efficiently and converges quickly for many
input quad meshes. That indicates that quad meshes with orthogo-
nal diagonals are a great surface discretization that is very flexible.
However, for difficult inputs such as quad meshes that contain quads
with two long diagonals that are far from orthogonal, the slower ex-
tended algorithm is required. As expected, additionally requiring the
white faces to be planar makes the optimization significantly more
constrained. While an input control quad mesh can be deformed by
specifying different aspect ratios for different quads, we currently do
not have an algorithm that jointly computes an interesting pattern
directly on the surface as initialization. We leave this to future work.
As already indicated in Sec. 3, the discretization of surfaces based
on the two diagonal meshes of a control quad mesh offers numerous
possibilities for future research in discrete differential geometry and
in geometry processing.
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Fig. 18. (a) A checkerboard version of the five-ringed symbol of the Olympics Games. Note that the five rings join seamlessly. (b) and (c) Two portrait-like
patterns inspired by the Tokyo 2020 Mascots. The "eyes" are realized by prioritizing tiles near the eye locations to appear.

Fig. 19. 2D patterns with arbitrary rectangles. They are created by allowing
each black rectangle to scale uniformly by a different ratio. The control
meshes of (a1) and (a2) have the same combinatorics but different boundary
shapes. (b) is a deformed version of the first Mascot design (Fig. 18 (b)).

7 CONCLUSION

Inspired by the logo design for the Olympic games in Tokyo, we
study checkerboard patterns with black rectangles. These patterns
can be 2D or 3D. The black faces are always (planar) rectangles
and the white faces are arbitrary polygons. To generate these pat-
terns, we propose a generalization of 2D rhombic tilings to 3D: quad
meshes with orthogonal diagonals. We analyze the geometry of
such meshes and present two novel algorithms. First, we propose
a novel 2D tiling algorithm to generate checkerboard pattern with
three types of black rectangles based on integer programming. Sec-
ond, we propose a numerical optimization algorithm to generate
checkerboard pattern from input quad meshes.
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Fig. 20. Checkerboard patterns with boundaries generated from reference 2D shapes.
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Fig. 22. Two 3D designs created by lifting our bigger version of the Para-
lympics logo (Fig. 17 (c)) to a sphere (a) and a hyperbolic paraboloid (b).
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Fig. 23. 3D checkerboard patterns with black rectangles and white planar faces. In (a) and (b), all black faces are squares. In (c), the black faces are randomly

assigned to one of three prescribed aspect ratios: 1, \/5, and V3.

Fig. 24. Shape change due to topology. (a) A control mesh of a double torus,
after edge midpoint subdivision, yields a pattern with black parallelograms.
(b) Optimizing for black squares changes the shape.

Fig. 25. An architectural model inspired by the department of Islamic art
structure in the Louvre.
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