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Abstract—A key assumption of perspective projection is that
linear features in 3D shall remain linear after being projected
to the 2D screen. This assumption is preserved when we draw
a spherical panorama perspectively in arbitrary viewing direc-
tions and field-of-views as long as the camera position is fixed
at the center. However, when the camera moves away from
the center, barrel-like distortions appear and such assumption
breaks. To address this issue, we propose modifications to the
equirectangular-to-perspective (E2P) projection that significantly
reduced distortion of linear features when the camera position is
away from the center. We compared with other common methods
that aim to augment panoramas with 3D information including:
1) building a point cloud augmented with per-pixel depth and 2)
building a 3D room model according to room layouts, and found
that our method produced rendering results with less linearity
distortion measured quantitatively and qualitatively.

Index Terms—Virtual Reality, Equirectangular Projection, Per-
spective Projection

I. INTRODUCTION

A spherical panorama stores incoming ray intensities toward
a fixed camera position in all possible directions. Commonly,
the directions are sampled on a sphere (centered at the camera
position) in a 2D equirectangular format. Using just a single
panorama, one can render accurate perspective projections
from the camera point in arbitrary viewing directions and
field-of-views through sampling strategies commonly known
as the equirectangular-to-perspective (E2P) projection. In VR
and virtual tour applications, this is known as the 3DoF (i.e.,
rotations along three axes) of a perspective camera in a virtual
environment, albeit at a fixed position.

It is actually straightforward to render perspective projec-
tions from an off-center position, although the results would
not be correct anymore. This is done by mapping the panorama
onto a spherical mesh centered at the camera position through
projective texture-mapping and then draw perspective views
using standard perspective camera models at the off-center
positions. An analytical form of this off-center E2P projection
is described in Section III-A. The resulting rendering (see the
accompanying video for examples) would be still ”intuitive”
in general, i.e., objects would become bigger when the camera

Fig. 1. An off-center E2P projection. Point P is the camera center and point
I is the intersection of the looking ray (green) and the unit sphere. We use
a right-handed system with +z direction at azimuth=0° and zenith=0° and +x
direction at azimuth=0° and zenith=90°. The viewing pyramid is drawn in
blue. Red lines show the left edge of the image plane that is projected to a
curved geometry in the 3D scene due to distortions.

moves closer, and move to the right when the camera moves to
the left, and vice versa. However, the rendering would contain
two major sources of errors. First, barrel-like/spherical distor-
tions. Second, the lack of true 3D effects such as parallax,
occlusion, and disocclusion (i.e., re-appearing of previously
occluded objects).

There already exist numerous previous work that aimed
to synthesize parallax effects and occlusion/disocclusion for
perspective images or videos [1]–[4]. However, to our best
knowledge, no prior published methods exist to specifically
address the barrel-like distortion issue. Toward this goal, we
reinterpret the issue as the breaching of the ”3D-to-2D linearity
preservation” assumption of perspective projections. That is,
linear lines in 3D shall remain linear after being perspectively
projected to a 2D image plane. We propose two modifications
to the standard E2P projection scheme that effectively reduce
the distortion of visual linearity, as follows:

First, in order to preserve the linearity of vertically straight
lines in 3D in the 2D view, we re-project the panorama
to a cylinder so that all vertically straight lines in 3D are



now guaranteed to be projected back to straight lines in 2D.
While cylindrical projection is a well known concept, we
provide an analytical proof to back up the claim. Second, we
propose novel computational dolly-zoom effects to find a set
of alternative camera position and field-of-view for the same
viewable region that would minimize linearity distortions. In
summary, the first measure completely eliminates all distor-
tions of vertical lines while the second measure can reduce
distortions in both horizontal and vertical directions.

To quantitatively and qualitatively measure the performance
of linearity distortions of our approaches, we used HAWP [5]
to detect straight line segments in the rendered perspective
views. We compared our results with the vanilla off-center
E2P projection scheme and two common ways to estimate
rough 3D models from panoramas: 1) building a point cloud-
like mesh with per-pixel depths (ground-truth or predicted by
neural networks), and 2) building a 3D room model using room
layouts estimated by deep learning methods such as LED2-
Net [6] textured by the panorama. We find that our method pro-
duced renderings with significantly lower linearity distortions
measured by quantitatively counting the straight line segments
after E2P projections and qualitative observations.

Our contributions are summarized as follows:
• We provide a theoretical proof to support the claim that

cylindrical projections eliminate all linearity distortions
of vertically straight features in 3D in off-center perspec-
tive views.

• We propose a novel computational dolly-zoom effect
scheme to generate perspective views of moving cameras
in which linearity distortions are significantly reduced.

• We propose a novel way to to quantitatively measure the
linearity distortions of off-center perspective projections
of panoramas based on HAWP [5], a robust neural
network-based straight line segment detection method.

II. RELATED WORK

A. Panoramic 3D modeling and datasets
3D modeling and reconstruction of real-world scenes based

on spherical panoramic (also called ”360°” in commercial
settings) image inputs is a popular and fast advancing research
field in recent years. Key tasks are now mainly solved by
deep learning, including depth estimation [8], [8]–[14], room
layout estimation [15]–[19], object detection and segmenta-
tion [20], [21], and structure-from-motion (SfM) tasks such as
the registration of multiple panoramas [22], [23]. A number
of panoramic image datasets have been produced to aid the
research. Matterport3D [24] and Standford2D3D [25] are real-
world large-scale RGB-D datasets of diverse indoor scenes.
Structure3D [7] and SunCG [26] dataset are synthetic datasets
providing realistically rendered indoor RGB-D images and an-
notations of 3D structures. Gibson [21] is a real-world dataset
that includes high-quality RGB panoramas, global camera
poses, and 3D meshes. Finally, Zillow Indoor Dataset [27]
is a massive dataset of panoramas taken in real-world, largely
unfurnished houses that also come with room layouts, camera
poses, and bounding boxes of windows, doors and openings.

B. Novel View Synthesis with Panoramas

The task of rendering perspective views of panoramas from
their original camera positions is a special case of novel
view synthesis problems. We limit the scope of discussions
to methods rely on panoramic image inputs. Layered Depth
Images (LDI) [28] and Multiplane Images (MPI) [29] are used
as image-based representations for novel view synthesis, but
for large translations, they might lack sufficient information
to render correctly. Multi Depth Panoramas (MDPs) [30] and
PerspectiveNet [31] comprise of multi-RGBDα images for
high-quality and efficient novel view generations. Hedman
et al. [32] input burst of aligned color-and-depth photos
to generate 3D panorama, and their 3D effects could also
interact with the scene. Jin et al. [33] and Zeng et al. [34]
leverage the geometric structures of a 360° indoor image
for depth estimation. Attal et al. [35] simultaneously learn
depth and occlusions via a multi-sphere image representation,
which could handle occluded regions in dynamic scenes. With
46 input light field videos, Broxton et al. [36] present a
system that is able to reproduce view-dependent reflections,
semi-transparent surfaces, and near-field objects. Tobias et al.
introduce OmniPhotos [37] for quickly and casually captur-
ing 360° VR panoramas, and improve the visual rendering
quality by alleviating distortion using a novel deformable
proxy geometry. Serrano et al. [38] present a device which
enable head motion parallax in 360°video. Other works extend
these approach to point clouds, Aliev et al. [39] present a
point-based approach to generate novel views of the scene.
Voxel grid-based methods such as DeepVoxels [40] encodes
the view-dependent appearance of a 3D scene as 3D voxels.
Implicit function-based methods such as Sitzmann et al [41]
propose a continuous, 3D structure-aware scene representation
that encodes both geometry and appearance.

Overall, most existing methods reply on input data that
consists of multiple panoramas (taken at different camera po-
sitions), often as panoramic videos shoot either from a single
moving 360° camera or an array of fixed or moving cameras
(capturing rigs). One exception is [42], in which they rely on
deep learning (DL)-based methods to directly synthesize novel
views from just a single panorama. In comparison, our method
takes an extremely lightweight approach to the problem (no
DL training/inference nor video-sequence inputs are needed,
and is very computationally light), with a focus on tackling
linearity distortions.

III. METHOD

In this section, we first describe the analytical form of
the vanilla off-center E2P projection in Section III-A. We
then describe our two measures to reduce barrel distortions
in Section III-B and III-C.

A. Off-center E2P projection

We first review annotations. We assume the panorama is
mapped to a unit sphere centered at the origin. We assume
the perspective camera’s position is P = (px, py, pz), looking
direction is Dir = (dirx, diry, dirz), and up direction is Up =



Fig. 2. (a) Off-center perspective projections of a panorama contain barrel distortions and break the ”linearity” assumption of perspective projection that
straight lines in 3D remain straight in 2D projections. (b) With our distortion-reduction measures, linearity distortions are significantly reduced. In comparisons,
existing 3D-modeling methods such as augmenting the panorama with (c) ground-truth depth or (d) predicted room layouts (using LED2-Net [6]) still do not
adequately preserve the linearity assumption. For examples, observe the broken lamp wires and doorway in (d). We show the panorama and room layout on
upper-left and the camera position and looking direction on lower-left. The panorama and the ground-truth depth are from the Structure3D dataset [7].

(upx, upy, upz). Up is orthogonal to Dir. The shape of the
rectangular image plane in 3D can then be described by two
angles fovx and fovy, i.e., the horizontal and vertical field-of-
view angles of the pyramid formed by the camera center and
the image plane. Therefore, the width and height of the image
plane are width = near ·tan(fovx/2)·2 and height = near ·
tan(fovy/2) · 2, respectively. near is the distance between
the camera position and the image plane. We denote the ”left”
direction as Left = Up×Dir, × denotes right-handed cross
product. See Figure 1 for an example.

To draw a perspective projection, we compute the colors of
every 2D positions on the image plane (e.g., pixels). For 2D
position (X,Y ), 0 ≤ X,Y ≤ 1, X is left to right direction and
Y is top to bottom direction, we first derive the corresponding
3D ray direction, Ray = (rayx, rayy, rayz), as:

|Dir ·near+Left ·(0.5−X) ·width+Up ·(0.5−Y ) ·height|,

which can be shortened as:

|Dir + Left · (1− 2Ẋ) · tan(fovx/2)+
Up · (1− 2Ẏ ) · tan(fovy/2)|. (1)

Next, we find the spherical coordinate, (θ, ϕ), of the point
I on the unit sphere that intersects with Ray from the camera
position. Recall that θ is the zenith (angle from the +z axis),
ϕ is the azimuth (angle of counterclockwise rotation along
+z-axis from the +x axis). [...] Finally, the corresponding
2D coordinate in equirectangular projection can be trivially
derived as ( ϕ

2π ,
θ
π ), which is used to sample a color in the

panorama.

B. Cylindrical projection

We can make the assumption that vertical features in the
scene, such as columns and wall intersections, are nearly
always mapped to vertical lines in the panorama. There are
two reasons to support this assumption. First, modern 360°
cameras have strong image stabilization features to align the
shoot panoramas to be in nearly upright position, i.e., the -z
direction in 3D is aligned to the direction of gravity. Second,
there exist post-processing algorithms to further transform a
panorama to make it in the upright position (e.g., the ”camera
rotation pose alignment” in [17]). However, the assumption

doesn’t mean that vertical features in the scene are mapped to
vertical lines in 3D through the equirectangular projection.
Instead, they are mapped to meridians on the unit sphere,
which are in fact curves in 3D. As a result, they would be
perspectively drawn as curved lines in 2D when the camera
position is off the origin.

We point to a simple solution to ensure that vertical features
in the scene are always perspectively drawn as straight lines in
2D even when the camera is not at the origin: projecting the
panorama to a cylinder. We assume the cylinder has a radius
of 1, is centered at the origin, is in the ”upright” position (i.e.,
axis is aligned to the +z axis), and has an infinite height. We
review general equirectangular-to-cylinder (E2C) projection
as follows.

Equation 1 again describes the 3D ray direction, Ray, of
a 2D position (X,Y ) on the image plane of the camera. Its
intersection point with the cylinder, Ic, can be calculated by
solving t′ in:

Ic = P + t′ ·Ray, |Icx + Icy| = 1,

which can be solved by having:

a′ = Ray2x +Ray2y,

b′ = 2 · (Px ·Rayx + Py ·Rayy),

c = P 2
x + P 2

y − 1.

where P denotes the camera position. t′ equals (−b′ +√
b′2 − 4a′c′)/2a′. Next, convert |Ic| to spherical coordinate

(θ, ϕ), and use it to sample a color in the panorama.
To realize the above projection model in the OpenGL

rendering pipeline, render a scene with a 3D cylinder. The
cylinder is textured using the panorama as a projective texture.

We now propose the following lemma to support the claim
that cylindrical projections necessarily preserve linearity of
vertical straight lines in 3D in the 2D perspective projections:

Lemma III.1. A vertical feature in 3D in the scene is
perspectively drawn as a 2D straight line under a cylindrical
projection.

Proof. Recall that a vertical feature in 3D is necessarily drawn
as a vertical line in the 2D panorama under the default
equirectangular projection, which is then mapped to a subset



Fig. 3. Off-center cylindrical projections. (a): A rendering using the same camera position and looking direction as in Figure 1. All vertical features in the
scene are now drawn as straight lines. (b): After the camera is pitched downward. The vertical features are still drawn as 2D straight lines, but not vertical.
(c): After the camera is rolled clockwise. Again, vertical features are drawn as 2D straight lines.

of a meridian on the sphere. A cylindrical projection maps
every subset of a meridian on the sphere to a vertical straight
line on the cylinder. This is because we can always find a
plane that intersects the +z axis and the subset of the meridian,
and the plane would necessarily intersects a vertical straight
line on the cylinder. Finally, recall that perspective projection
preserves the linearity of any straight lines in 3D in the 2D
perspective views.

Note that Lemma III.1 applies for cameras with not only
arbitrary positions but also arbitrary orientations (rolls, pitches,
and yaws), that is, not just ”upright” cameras with a left di-
rection perpendicular to the z axis. See Figure 3 for examples.

In summary, Lemma III.1 states that any vertical features in
the 3D scene are guaranteed to be drawn as straight lines in any
2D perspective views. However, the inverse is not necessarily
true - everything depicted on a column in the panorama would
remain straight in 2D perspective views, no matter they are
actually vertically aligned in 3D or not.

C. Computational dolly-zoom effect

In cinematography, a ”dolly-zoom” effect refers to the
technique that the field-of-view (FOV) angle is continuously
narrowed while the camera is moving away from an object in
the scene, or vice versa, in a calibrated manner such that the
object would appear at the same size on the 2D frame during
the movements. The goal is to create so called ”perspective
distortions” in which the relative sizes of other objects in the
scene change w.r.t. to the size of the particular object. We
refer to the excellent introductory video made by Fandor [43]
for a visual explanation of dolly-zoom effects. In Computer
Graphics and Computer Vision, dolly-zoom techniques were
leveraged to perform post-capture image composition [44] and
as a guideline to do single-shot view synthesis [45].

We qualitatively observed that, in perspective drawing of
panoramas, the amount of barrel distortions is proportional
to the distance between the camera position and the origin
(becomes zero when they collide). Therefore, our main idea
is to leverage dolly-zoom principles to draw roughly the same
subset of the panorama in the image plane but using an
alternative set of camera position and field-of-view (FOV)
angles such that the camera position is as close to the origin
as possible. We call the new camera position, Ph, and the new
FOV angles, fovxh and fovyh, the heuristic solution to the

Fig. 4. Inspired by the dolly-zoom effects in cinematography, we find
an alternative set of camera position and FOV angles that with which the
perspective camera draws roughly the same subset of the panorama but with
less distortions. The original camera is shown in blue and the adjusted camera
is shown in cyan. Observe that the two drawn images have roughly the same
boundary and center. Just that the images are stretched in different ways.

computational dolly-zoom problem. To elaborate, Ph is the
solution to the following optimization problem:

argmin
t

|Ph|

subject to Ph = P + t ·Dir,
(2)

where P is the original camera position and Dir is the looking
direction. Given the new camera position Ph, we solve the new
FOV angles, fovxh and fovyh, as follows. First, we denote
the ”left-middle” and ”right-middle” viewing rays, Rayleft
and Rayright, as the rays from P toward the left-middle and
right-middle points of the original image plane. Next, we find
the intersections of Rayleft and Rayright to the sphere or
cylinder (depending on which projection scheme is used),
denoted as Ileft and Iright, respectively. See Figure 4 for
an example. Our goal is that in the new viewing pyramid,
the new left-middle and right-middle viewing rays should
intersect the sphere/cylinder at the same positions. Therefore,
the new left-middle viewing ray, Raynewleft , is the ray from Ph

toward Ileft. The new right-middle viewing ray, Raynewright, is
the ray from Ph toward Iright. Finally, we calculate the new
”left-horizontal” and ”right-horizontal” FOV angles, fovxleft

and fovxright, as the angles between Dir and Raynewleft and



Fig. 5. The viewing pyramids of perspective views of a original camera (a)
and the dolly-zoom adjusted version (b). To assist qualitative comparisons, we
show how a regular grid on the camera’s image plane (blue) are first projected
to the cylinder (red) and then projected back to the respective image planes
(cyan). We can see that the new perspective view exhibited lower distortions
of the image and the projected regular grid.

between Dir and Raynewleft , respectively. The new vertical FOV
angle is calculated as:

atan(
(tan(fovxleft) + tan(fovxright))

aspect
),

aspect is the aspect ratio of the original image plane. Note that
the new viewing pyramid could be skewed as fovxleft and
fovxright are not necessarily the same. A visual comparison
of two different viewing pyramids that covers nearly the same
viewing plane is shown in Figure 5.

IV. RESULTS AND COMPARISONS

We tested on a laptop computer with 6-core 2.6GHZ CPU,
16GB ram, and NVidia GTX 1650 Ti graphics card. We
use Google Ceres-Solver to solve the computational dolly-
zoom effect optimization problem, with which the problems
are solved within a few milliseconds. We tested on panora-
mas from the Structure3D dataset [7] (synthetic), the Gibson
dataset [21] (real-world), and several panoramas shoot by
ourselves (we used a RICOH THETA Z1 360◦ camera). The
depth information are either ground truth (available in the
Structure3D dataset only) or predicted by a neural network-
based depth prediction method (BiFuse [10]). The layouts are
either ground truth (available in the Structure3D dataset only)
or predicted by LED2-Net [6].

A. Qualitative Evaluations

In Figure 8, we qualitatively compare off-center perspective
projection results of our method with the vanilla E2P projec-
tion and two common approaches to augment panoramas with
3D information (namely per-pixel depths and room layouts).
To assist visual comparison, we highlight straight features in
3D in novel off-center perspective views. To do so, we first run
HAWP on the original perspective views in cubemap format
rendered at the original camera position. Note that straight
features in 3D shall be drawn as straight 2D lines in the
perspective views so they are easily detectable by HAWP. The
detected straight line segments are then projected back to the
equirectangular domain using the inverse of E2P projection

and baked into the panorama. These baked straight lines are
visible when we draw novel perspective views from off-center
camera positions.

In summary, our results have significantly lower linear
distortions then the vanilla E2P projections. Comparing to
novel view synthesis with 3D models built by augmenting
panoramas with per-pixel depths or room layouts, their results
often have visible artifacts, such as blurs (happen when
viewing ”stretched” pixels by depths from sideways) and
broken images features (happen when room layouts mismatch
3D objects, such as furniture, in the scene). In contrast, our
results have no such artifacts. See the accompanying video for
animated versions of the results.

B. Quantitative Evaluations

In Figure 7, we quantitatively compared the same video
sequences produced by our method and other off-center per-
spective projection methods by counting the numbers and
the sums of 2D Euclidean lengths of straight line segments
detected by HAWP [5]. The higher the number and sum
of lengths imply that the projection scheme better preserves
linearity of 3D straight features in 2D projections. Example
detection results are shown in Figure 6. The lengths are
normalized w.r.t. the height of the image. We tested on video
sequences produced in four different real-world scenes: office,
kitchen, dining room, and living room. In all four scenes, our
method gets highest scores on both numbers of detected lines
and sums of lengths. The quantitative results agree with our
qualitative evaluations that the vanilla off-center perspective
method would make straight features in 3D to become curved
lines in 2D views, which are more difficult for HAWP to
detect. Meanwhile, depth and room layout-based 3D models
may deform the whole scene and make the 3D straight features
blurred or broken.

V. CONCLUSION

We proposed two lightweight and easy-to-implement solu-
tions to reduce linearity distortions in novel off-center perspec-
tive views of panoramas. The effectiveness of our methods are
confirmed by qualitative and quantitative evaluations. In terms
of limitations, our method does not create true 3D effects such
as parallax and occlusion/disocclusion. Therefore, applications
of our method are limited to casual viewing of panoramas, not
full 6DoF (3D rotations and 3D translations) viewing with VR
headsets. Still, we find that the illusion of a 3D scene remains
when the camera movement is small. Our hypothesis is that
human brains can still deduct 3D depths by the important
image features including the linear lines. However, realism
of the rendering does begin to degrade when the movements
of the camera become larger. For future work, we would like
to leverage readily-available 3D information of a panorama
such as depths and room layouts predicted by neural networks.
Another goal is to evaluate how much linearity of straight
features contributes to human perceptions of a 3D world.



Fig. 6. 2D straight line segments successfully detected by HAWP [5] in novel off-center perspective views by the vanilla E2P projection scheme in four
different scenes. HAWP also calculate the length of each detected line as 2D Euclidean distance normalized w.r.t. the height of the image.
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Fig. 7. Quantitatively results for four different Off-center perspective projec-
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the most straight lines.
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