
Tutorial on Integer Programming for Visual Computing

Peter Wonka and Chi-han Peng

December 13, 2018

1 Notation

• The vector space is denoted asR,Rn ,Rm×n ,V,W

• Matricies are denoted by upper case, italic, and boldface letters: Am×n

• Vectors are column vectors denoted by boldface and lower case letters: x ∈Rn×1

• 1n ∈Rn is a n ×1 vector of all ones

• In is n ×n identity matrix.

• ei is the unit vector where only the i -th element is 1 and the rest are 0.

2 Optimization Terms

• General Form

min
x

f (x)

s.t gi (x) ≤ bi , 1 ≤ i ≤ m

x ∈Zn1 ×Rn2

• Details:

– x is a vector of n = n1 +n2 variables

– gi are called constraint functions

– f is called objective function

• The feasible region is:
F = {x ∈Zn1 ×Rn2 |gi (x) ≤ bi }

• A solution is an assignment of values to variables

• An optimal solution x∗ has smallest value of f among all feasible solutions.

• term optimization vs. term programming

1

3 Linear Programming

3.1 General Form

• General form:

min
x

cT x

Ax ≤ b

• x ∈Rn is a vector of variables

• c ∈Rn is a vector of known coefficients (weights)

• A ∈Rm×n is a matrix. Each of the m rows of the matrix defines the coefficients of a linear
inequality.

• b ∈Rm is a vector. Each entry bi is on the right hand side of inequality i .

3.2 Example

• Example with two variables and two constraints:

min
x1,x2

c1x1 + c2x2

a11x1 +a12x2 ≤ b1

a21x1 +a22x2 ≤ b2

• More specific example with two variables and two constraints:

min
x1,x2

−4x1 −2x2

x1 +2.4x2 ≤ 12.1

7x1 ≤ 22

• Graphical Example:

max
x1,x2

100x1 +64x2

50x1 +31x2 ≤ 250

3x1 −2x2 ≥−4

x1 ≥ 0

x2 ≥ 0

2

optimum at (376/193,950/193)

x1

x2

3.3 How to solve linear programming problems?

• No analytic formula for the solution

• Reliable and efficient algorithms and software, e.g.

– Simplex algorithm

– Interior point algorithms

• Computation time proportional to n2m if m ≥ n; less with structure

• Formulating a problem as linear programming problem is already non-trivial

3.4 From linear programming to linear integer programming

• Optimization problem:

min
x

cT x

Ax ≤ b

• floating point variables

– x ∈Rn

– linear program (LP)

• integer variables

– x ∈Zn

– (linear) integer program (IP)

• binary variables

3

– x ∈ {0,1}n

• float and integer variables

– x is split into two groups of variables, xI and xF

– xF ∈Rn1 and xI ∈Zn2

– mixed integer program (MIP)

3.5 Variations of the standard form

• Optimization problem:

min
x

cT x

Ax ≤ b

• switch min and max

• switch ≤ and ≥
• include constraints with = as separate category

• require all variables to be positive (≥ 0)

• Example Optimization problem:

max
x

cT x

Ax ≤ b

x ≥ 0

3.6 Comments about formulations

Definition 1. A polyhedron P is a subset ofRn described by a finite set of linear constraints.
P = {x ∈Rn :Ax ≤ b}

Definition 2. A polyhedron P ⊆Rn1+n2 is a formulation for a set X ⊆Zn1 ×Rn2 if and only if X =
P ∩ (Zn1 ×Rn2).

Definition 3. A convex combination of points from a set S, x1, x2, ..., xk ∈ S, is any point of form
θ1x1+θ2x2+ ...+θk xk , where θi ≥ 0, i = 1...k,

∑k
i=1θi = 1. A set S is convex iff any convex combina-

tion of points in S is in S.

Definition 4. The convex hull conv S is the set of all convex combinations of points in S

• The formulation has to enclose all feasible integer points, but no infeasible integer points

• Runtime depends on

– number of variables

– number of constraints

4

– tightness of fit

• Formulation A is at least as strong as B if A ⊆ B

• Formulation A is stronger than B if A ⊂ B

• A formulation A is ideal if conv(feasible solutions) = A

3.7 Graphical Example

max
x1,x2

100x1 +64x2

50x1 +31x2 ≤ 250

3x1 −2x2 ≥−4

x1 ≥ 0

x2 ≥ 0

x1, x2 ∈Z

float optimum at (376/193,950/193)

integer optimum at (5,0)
x1

x2

• Rounded solution might not be feasible

• Rounded solution might be far from optimal solution

3.8 Different Components of Optimization in the literature

• Modeling:

– How to formulate an application problem as a standard optimization problem?

• Algorithm Development:

– How to derive new optimization algorithms for standard optimization problems?

– How to derive new optimization algorithms for specialized optimization problems?

• Optimization Theory:

5

– Finding convergence guarantees, bounds, ... of optimization algorithms

3.9 Different Components of Optimization in Visual Computing

• Modeling:

– propose an interesting problem formulation for a new or an existing problem in visual
computing?

• Algorithm Development:

– propose a new algorithm for a specific optimization problem in visual computing

• Modeling + Algorithm Development

• Theory

– typically not done in visual computing, but in optimization and machine learning

3.10 How to solve an IP Problem?

• use a standard solver such as Matlab, Gurobi, Mosek, ... and see what happens

• create a new heuristic solver

3.11 Branch and Bound

• How to create upper and lower bounds for (the objective value of) the solution?

– The LP relaxation is a lower bound for the optimal solution

– Any particular feasible solution is an upper bound for the optimal solution

• If we solve the LP relaxation of an MILP problem we distinguish 3 cases:

– LP is infeasible → MILP is infeasible

– Optimal LP solution is feasible solution for MILP problem → optimal solution

– LP is feasible and optimal LP solution is not feasible for MILP → lower bound

• First two cases we are finished, third case we branch (recursively)

• The most common way to branch is to do the following

– Select a variable i whose value x̂i is fractional in the LP solution

– Create two subproblems:

◦ Add constraint xi ≤ bx̂i c
◦ Add constraint xi ≥ dx̂i e

6

x3 ≤ 5 x3 ≥ 6
x3 = 5.7

4 Example Problems

4.1 Knapsack Problem

• Input:

– a set of items i with values vi and weights wi

– a knapsack with maximum capacity c

• Goal: pack a subset of items into the knapsack, such that

– the sum of weights does not exceed the capacity C

– the sum of the values is maximized

• Example

C = 10

w1 = 5, v1 = 3

w2 = 8, v2 = 7

w3 = 3, v3 = 5

• Formulation:

– variables: xi = 1 means we pack item i

7

–

min
x

vT x

wT x ≤ c

xi ∈ 0,1

• Difficulty:

– NP-hard

– (pseudo-polynomial) Dynamic Programming solution exists for integer weights and ca-
pacity.

4.2 Matlab Code

C = 750
weights = [70; 73; 77; 80; 82; 87; 90; 94; 98; 106; 110; 113; 115; 118; 120];
values = [135; 139; 149; 150; 156; 163; 173; 184; 192; 201; 210; 214; 221; 229;
240];
LZero = zeros(length(weights),1);
LOne = ones(length(weights),1);
LCount = 1:length(weights);
tic;
intlinprog(-values, LCount, weights’, C, [], [], LZero, LOne)
toc;

4.3 Map Labeling

• Input:

– a set of map objects i where each object has a discrete set of possible label positions j

– costs c for each label placement

• Goal: place at least one label per object without overlap

• Illustration: two cities one river

x31x11 x12

x13 x14
x21 x22

x23 x24

8

• Variables

– xi j = 1 if label for object i is placed at position j

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

– Coverage constraint - each element is labeled exactly once:

∀i
∑

j
xi j = 1

– Non-overlap for conflicting placements:

◦ for each pair of overlapping placements i j and l m

xi j +xlm ≤ 1

• Objective: min
∑

i
∑

j ci j xi j

4.4 Assignment Problem

• Input:

– n people to carry out n jobs

– ci j : cost of assigning person i to job j

• Goal: assign each person to exactly one job, so that each job has one person assigned to it.

• Illustration:

ci j

people i jobs j

• Variables

– xi j = 1 if person i is assigned to job j

• Objective:
min

∑
i

∑
j

ci j xi j

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

9

– Limited work: each person i does exactly one job

∀i
∑

j
xi j = 1

– Coverage constraint - each job is done by one person:

∀ j
∑

i
xi j = 1

• Difficulty:

– Hungarian Method (Kuhn–Munkres algorithm or Munkres assignment algorithm)

– Auction algorithm

4.5 Tourist Map Layout

• Input:

– overview map with Points of Interest (POIs)

– detail maps for each POI

– positions for detail maps

– costs ci j for assigning POI i detail map position j

• Goal: assign each detail map to one position.

• Illustration:

ci j

m1

m2

m3

POI

• Variables

– xi j = 1 if map i is assigned to position j

• Objective:
min

∑
i

∑
j

ci j xi j

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

10

– Each map i is assigned once

∀i
∑

j
xi j = 1

– No overlap between maps:

∀ j
∑

(i , j)∈O j

xi j = 1

◦ O j is the set of all placements that overlap position j

• Literature: Birsak et al., "Automatic Generation of Tourist Brochures", Eurographics 2014.

4.6 Tiling

• Input:

– a set of tiles i

– a domain consisting of positions j

– costs ci j for assigning tile i to position j

– minimum and maximum number of times tile i is allowed to be used (mi ni ,maxi)

• Goal: cover the domain with the given tiles

• Illustration:

ci j

• Variables

– xi j = 1 if leftmost square of tile i is assigned to position j

• Objective:
min

∑
i

∑
j

ci j xi j

• Constraints:

11

– Binary constraints:
xi j ∈ {0,1}

– Each tile i is assigned between its within its allowed limits

∀i mi ni ≤
∑

j
xi j ≤ maxi

– No overlap between squares in the domain:

∀ j
∑

(i , j)∈O j

xi j = 1

◦ O j is the set of all tile placements that overlap position j

4.7 Shape Matching

• Input:

– two shapes where each shape has n vertices.

– a cost ci j for assigning vertex i from shape 1 to vertex j on shape 2,

• Goal: assign each vertex on shape 1 to exactly one vertex on shape 2

• Formulation: identical to the assignment problem

• Literature:

– Vestner et al., "Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel
Density Estimation in the Product Space", CVPR 2017.

4.8 Camera Placement

• Input:

– a domain sampled into positions p

– a set of possible camera positions i

• Goal: select a minimal set of cameras that cover the domain

• Illustration:

12

x1

x2

x3

V2

• Variables

– xi = 1 if camera position i is selected

• Objective:
min

∑
i

xi

• Constraints:

– Binary constraints:
xi ∈ {0,1}

– Position conflict constraints

∀i
∑

j∈Ni

x j ≤ 1

– Ni is the set of locations that conflict with location i

– Visibility constraint:

V x ≥ 1

◦ the i th column of V is a binary mask that encodes what positions are seen by camera
i

4.9 Graph Review

• Graph (V ,E)

– V is a set of nodes

– E is a set of edges

• E(S) = {e = (i , j) : i , j ∈ S}

13

• δ(S) = {e = (i , j) : i ∈ S and j ∈V \ S}

• δ(i) are all edges incident to node i .

• A tree is a connected graph with |V |−1 edges.

4.10 Minimum Spanning Tree

• Input:

– a graph (V ,E)

– the cost ce for selecting edge e ∈ E .

• Goal: find a minimum cost spanning tree

• Variables

– xe = 1 if edge e is selected

• Binary constraints:
xe ∈ {0,1}

• Number of edges constraint: ∑
e∈E

xe = n −1

• Cut constraint:
∀S ⊂V ,S 6= ;,V

∑
e∈δ(S)

xe ≥ 1

• Objective function:
min

∑
e∈E

ce xe

• We call the linear relaxation of this formulation Pcut

• Alternative constraint: subtour elimination constraint

∀S ⊂V ,S 6= ;,V
∑

e∈E(S)
xe ≤ |S|−1

• We call the resulting linear relaxation of the formulation Psub

• Notes:

– Psub is the convex hull of the set of feasible solutions.

– Psub is a strictly better formulation than Pcut .

14

4.11 Traveling Salesman

• Input:

– a graph (V ,E)

– the cost ce for selecting edge e ∈ E .

• Goal: find a minimum cost tour

• Variables

– xe = 1 if edge e is selected

• Binary constraints:
xe ∈ {0,1}

• Number of incident edges constraint:

∀i
∑

e∈δ(i)
xe = 2

• Cut constraint:
∀S ⊂V ,S 6= ;,

∑
e∈δ(S)

xe ≥ 2

• Objective function:
min

∑
e∈E

ce xe

• Alternative constraint: subtour elimination constraint

∀S ⊂V ,2 ≤ |S| ≤ |V |−1
∑

e∈E(S)
xe ≤ |S|−1

• Similarly, we call the resulting linear relaxations Pcut and Psub

– Pcut = Psub

– Neither is the convex hull of the feasible points

4.12 City Exploration

• Input:

– a city map as graph (V ,E)

– c ∈R|E | - the attractiveness of each edge

15

– t ∈R|E | - time it takes to walk along an edge

– T - maximum time for the walk

– a designated start node s and end node e

• Goal: find a walk through the city from from start node to end node that explores the most
attractive edges but stays under the time limit.

• Illustration

ci , ti , xi

v j

s e

• Variables

– xi = 1 if edge i is selected

– v j = 1 if vertex j is selected

• Binary constraints:
xi , v j ∈ 0,1

• Time constraint:
tT x ≤ T

• Connection constraint: ∑
i∈N j

xi = v j
∑

i ∈ Ns xi = 1
∑

i∈Ne

xi = 1

– N j is the set of edges incident to vertex j

• Objective function:

– maxcT x

• Cycles:

– the formulation can create closed cycles

– solution 1: lazy constraint adding

– solution 2: add constraints that forbid cycles (similar to MST and TS formulations)

16

5 MIP Modeling Techniques

5.1 AND of variables

• "y is true if all elements in x are true. y is false otherwise.":

y = x0 ∧x1 ∧ ...∧xN−1

• y and x are Boolean variables. x0, x1, ..., xN−1 are the elements in x. N is the size of x.

• Trivial way to model:
y = x0x1...xN−1

It is not going to work!

• As linear inequalities:
0 ≤∑

x−N y ≤ N −1

• Example:

– Vertex configurations in a 2D triangle-quad hybrid mesh:

E0

E1
E2

E6

E9

E5

E3

E7
E8

E4

E10
E11

vj

Cj,m

C j m is the m-th configuration for vertex v j . C j m contains E1, E4, E6, E9, and E11 out of
v j ’s twelve adjacent edges:

C j m = !E0 ∧E1∧ !E2∧ !E3 ∧E4∧ !E5 ∧E6∧ !E7∧ !E8 ∧E9∧ !E10 ∧E11

As linear inequalities:

0 ≤ (1−E0)+E1+(1−E2)+(1−E3)+E4+(1−E5)+E6+(1−E7)+(1−E8)+E9+(1−E10)+E11−12y ≤ 11

5.2 OR of variables

• "y is true if any element in x is true. y is false otherwise.":

y = x0 ∨x1 ∨ ...∨xN−1

• As linear inequalities:
−N +1 ≤∑

x−N y ≤ 0

• Example:

– Converge constraint: a vertex is "covered" if and only if at least one of the edges that are
within a close proximity is selected.

17

vi = e0 ∨e1 ∨ ...∨eN−1

vi is the Boolean variable indicating if the vertex is covered. e0, e1, ..., en−1 are Boolean
variables of edges within a close proximity to the vertex.

◦ For a minimal-vertex cover problem, we may require that the coverage variables of all
vertices are true while minimizing the number of selected edges.

5.3 XOR of variables

• "y is true if elements in x sum to odd. y is false if elements in x sum to even."

y = x0 ⊕x1 ⊕ ...⊕xN−1

• As linear inequalities:

y = x0 +x1 + ...+xN−1 −2t

t is an integer slack variable. 0 ≤ t ≤ N −1.

• Alternatively, model it as a sequence of 2-inputs XORs (the t variables become Booleans).

5.4 Special order set (SOS)

• Special Ordered Sets of type 1 (SOS1):

– Given an ordered set of variables, q, at most one element in q can be non-zero.

• Special Ordered Sets of type 2 (SOS2):

– Given an ordered set of variables, q, at most two elements in q can be non-zero. And if
two elements are non-zero, they must be consecutive in their ordering.

• Supported by popular MIP solvers such as Gurobi and IBM CPLEX. These solvers use special
branching strategies to take advantage of SOSs.

• Examples:

– A SOS1 set, x, of Boolean variables x0, x1, ..., xN−1, means that:

x0 +x1 + ...+xN−1 ≤ 1

18

– SOS2: "knight8" template for translational symmetry in urban layout design:

◦ Integer programming for urban design. Hao Hua, Ludger Hovestadt, Peng Tang, and
Biao Li. European Journal of Operational Research (EJOR), 2018.

5.5 Exhaustive enumeration of all feasible solutions of a (Boolean) IP problem

• Let Z denotes a feasible solution of a IP problem with only Boolean variables. We can forbid
Z to be feasible, that is,

Z∧F =;
where F is the feasible region of the problem, by adding the following constraint:∑

0≤i≤N−1
(x0 if Zi is true, or (1−xi) if Zi is false) ≤ N −1

to the IP formulation. x denotes the variables. N is the number of variables.

• An enumeration of unique feasible solutions can be done by repeatedly solving the IP prob-
lem with all previously retrieved solutions forbidden.

• An exhaustive enumeration proceeds until the problem becomes infeasible.

• Examples:

◦ Given a IP with three Boolean variables, x0, x1, and x2, adding the following constraint
would forbid (0,1,0) as a feasible solution:

(1−x0)+x1 + (1−x2) <= 2

– Exhaustive enumeration of triangle-quad tilings in a 12-gon with side length 2.

19

5.6 Big-M method

• Use Boolean slack variables with sufficiently large coefficients to allow constraints to be "de-
activated".

• That is, rewriting a linear constraint:

aT x ≤ b

to be:

aT x ≤ b +M y

would allow it to be violated. M is a sufficiently large positive constant and y is a Boolean
slack variable. When it is violated, y is true.

• Optionally, add y to the objective function (to minimize) to introduce penalty for the con-
straints to be violated.

• Example:

– "Constrain the union of two (mutually exclusive) constraints to be true":

aT
0 x0 ≤ b0 or aT

1 x1 ≥ b1

◦ As linear inequalities:

aT
0 x0 ≤ b0 +M(1− y)

aT
1 x1 ≥ b1 −M y

where M is a sufficiently big positive constant and y is a Boolean slack variable.

◦ Example:

x ≤ 2 or x ≥ 6

is reformulated as:

x ≤ 2+M(1− y),

x ≥ 6−M y

• Discussions

– Many modeling techniques in MIP are variations of the big-M method.

– In general, big-M methods are more preferable than the equivalent non-linear formula-
tions.

– M should be kept as small as possible. Very big M impacts performance.

• Literature:

– Indicator Constraints in Mixed-Integer Programming. Andrea Lodi, Amaya Nogales-Gómez,
Pietro Belotti, Matteo Fischetti, Michele Monaci, Domenico Salvagnin, and Pierre Bonami.
SCIP Workshop 2014.

20

– Integer Programming Formulations 2. James Orlin. Course notes of Optimization Meth-
ods in Management Science on MIT OCW.

6 Quadratic Programming

6.1 General Form

• General form:

min
x

1

2
xTQx+cT x

Ax ≤ b

• x ∈Rn is a vector of variables

• c ∈Rn is a vector with known entries

• Q ∈Rn×n is a symmetric matrix with known entries

• A ∈ Rm×n is a matrix. Each of the m rows of the matrix define the coefficients of a linear
inequality.

• b ∈Rm is a vector. Each entry bi is on the right hand side of inequality i .

6.2 Comments

• if QÂ 0 (the matrix is positive-definite) the optimization is convex

7 Quadratic Integer Programming Examples

7.1 Quadratic Assignment

• Input:

– a set of n facilities i

– a set of n possible facility location j

– costs ci j kl for assigning facilty i to location j and facility k to location l

• Goal: assign facilities to grid cells to minimize costs

• Variations:

– costs ci j kl can be modeled arbitrarily

– costs ci j kl are modeled as the product ci j kl = fi kd j l , where fi k is a flow between facility
i and k and d j l is a distance between j and l . This is the classical quadratic assignment
problem.

21

• Variables

– xi j = 1 if facility i is assigned to location j

• Objective:

min
n∑
i

n∑
j

n∑
k

n∑
l

ci j kl xi j xkl

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

– Non-overlap: each facility i has exactly one position

∀i
∑

j
xi j = 1

– Coverage: each position is covered by exactly one facility

∀ j
∑

i
xi j = 1

• Literature: Loiola et al., "A survey for the quadratic assignment problem", European Journal
of Operational Research 2007.

7.2 Quadratic Assignment for Images

• Input:

– a set of n images with image distances di j

– a set of n possible image positions with distances gkl

– costs ci j kl = f (di k , g j l)

• Goal: assign images to grid cells to minimize the costs

• Variables

– xi j = 1 if image i is assigned to grid cell j

• Objective:

min
n∑
i

n∑
j

n∑
k

n∑
l

ci j kl xi j xkl

• Constraints:

– Binary constraints:
xi j ∈ {0,1}

– Non-overlap: each image i has exactly one position

∀i
∑

j
xi j = 1

22

– Coverage: each position is covered by exactly one image

∀ j
∑

i
xi j = 1

• Literature: Fried et al., "IsoMatch: Creating Informative Grid Layouts", Eurographics 2015.

7.3 Quadratic Assignment for Shape Matching

• Literature:

– Dym et al., DS++: A Flexible, Scalable and Provably Tight Relaxation for Matching Prob-
lems, ACM TOG 2017.

– Kezurer et al., Tight Relaxation of Quadratic Matching, SGP 2015.

7.4 Joint Segmentation

• Input:

– Two shapes. Each shape is subdivided into smaller patches P1 and P2, respectively

– A set of candidate segments for each shape: S1 and S2. Each segment consists of multiple
patches.

– A cost vector c where cij is the cost selecting a segment j in shape i .

– A cost vectordwhere di j encodes the cost of mapping segment i in shape one to segment
j in shape two.

– A cost matrix Q where qi j kl encodes the cost of mapping segment i in shape one to
segment j in shape two and segment k in shape one to segment l in shape two.

• Variables:

– xi j = 1 if segment j is selected from shape i .

– pi j = 1 if patch j is selected from shape i .

– mi j if segment i in shape one maps to segment j in shape two.

• Literature:

– Huang et al., Joint-Shape Segmentation with Linear Programming, ACM TOG 2011.

7.5 Fit and Diverse Sampling

8 Quadratically Constrained Quadratic Programming

8.1 General Form

• General form:

23

min
x

1

2
xTQx+c0

T x

xTQix+ci
T x ≤ bi

• x ∈Rn is a vector of variables

• ci ∈Rn are vectors with known entries

• Qi ∈Rn×n are symmetric matrices with known entries

• b ∈Rm is a vector. Each entry bi is on the right hand side of inequality i .

8.2 Mixed Integer Quadratically Constrained Programming

• Can be solved by commercial solvers

24

	Notation
	Optimization Terms
	Linear Programming
	General Form
	Example
	How to solve linear programming problems?
	From linear programming to linear integer programming
	Variations of the standard form
	Comments about formulations
	Graphical Example
	Different Components of Optimization in the literature
	Different Components of Optimization in Visual Computing
	How to solve an IP Problem?
	Branch and Bound

	Example Problems
	Knapsack Problem
	Matlab Code
	Map Labeling
	Assignment Problem
	Tourist Map Layout
	Tiling
	Shape Matching
	Camera Placement
	Graph Review
	Minimum Spanning Tree
	Traveling Salesman
	City Exploration

	MIP Modeling Techniques
	AND of variables
	OR of variables
	XOR of variables
	Special order set (SOS)
	Exhaustive enumeration of all feasible solutions of a (Boolean) IP problem
	Big-M method

	Quadratic Programming
	General Form
	Comments

	Quadratic Integer Programming Examples
	Quadratic Assignment
	Quadratic Assignment for Images
	Quadratic Assignment for Shape Matching
	Joint Segmentation
	Fit and Diverse Sampling

	Quadratically Constrained Quadratic Programming
	General Form
	Mixed Integer Quadratically Constrained Programming

