Tutorial on Integer Programming for Visual Computing

Peter Wonka and Chi-han Peng

December 13, 2018

1 Notation

- The vector space is denoted as $\mathbb{R}, \mathbb{R}^{n}, \mathbb{R}^{m \times n}, \mathbb{V}, \mathrm{~W}$
- Matricies are denoted by upper case, italic, and boldface letters: $\boldsymbol{A}_{m \times n}$
- Vectors are column vectors denoted by boldface and lower case letters: $\mathbf{x} \in \mathbb{R}^{n \times 1}$
- $\mathbb{1}_{n} \in \mathbb{R}^{n}$ is a $n \times 1$ vector of all ones
- \boldsymbol{I}_{n} is $n \times n$ identity matrix.
- \mathbf{e}_{i} is the unit vector where only the i-th element is 1 and the rest are 0 .

2 Optimization Terms

- General Form

$$
\begin{array}{r}
\min _{\mathbf{x}} f(\mathbf{x}) \\
\text { s.t } \quad g_{i}(\mathbf{x}) \leq b_{i}, \quad 1 \leq i \leq m \\
\mathbf{x} \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{array}
$$

- Details:
- \mathbf{x} is a vector of $n=n_{1}+n_{2}$ variables
- g_{i} are called constraint functions
- f is called objective function
- The feasible region is:

$$
F=\left\{\mathbf{x} \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} \mid g_{i}(\mathbf{x}) \leq b_{i}\right\}
$$

- A solution is an assignment of values to variables
- An optimal solution \mathbf{x}^{*} has smallest value of f among all feasible solutions.
- term optimization vs. term programming

3 Linear Programming

3.1 General Form

- General form:

$$
\begin{aligned}
& \min _{\mathbf{x}} \mathbf{c}^{T} \mathbf{x} \\
& A \mathbf{x} \leq \mathbf{b}
\end{aligned}
$$

- $\mathbf{x} \in \mathbb{R}^{n}$ is a vector of variables
- $\mathbf{c} \in \mathbb{R}^{n}$ is a vector of known coefficients (weights)
- $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ is a matrix. Each of the m rows of the matrix defines the coefficients of a linear inequality.
- $\mathbf{b} \in \mathbb{R}^{m}$ is a vector. Each entry b_{i} is on the right hand side of inequality i.

3.2 Example

- Example with two variables and two constraints:

$$
\begin{gathered}
\min _{x_{1}, x_{2}} \quad c_{1} x_{1}+c_{2} x_{2} \\
a_{11} x_{1}+a_{12} x_{2} \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2} \leq b_{2}
\end{gathered}
$$

- More specific example with two variables and two constraints:

$$
\begin{array}{r}
\min _{x_{1}, x_{2}}-4 x_{1}-2 x_{2} \\
x_{1}+2.4 x_{2} \leq 12.1 \\
7 x_{1} \leq 22
\end{array}
$$

- Graphical Example:

$$
\begin{aligned}
& \max _{x_{1}, x_{2}} 100 x_{1}+64 x_{2} \\
& 50 x_{1}+31 x_{2} \leq 250 \\
& 3 x_{1}-2 x_{2} \geq-4 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

3.3 How to solve linear programming problems?

- No analytic formula for the solution
- Reliable and efficient algorithms and software, e.g.
- Simplex algorithm
- Interior point algorithms
- Computation time proportional to $n^{2} m$ if $m \geq n$; less with structure
- Formulating a problem as linear programming problem is already non-trivial

3.4 From linear programming to linear integer programming

- Optimization problem:

$$
\begin{array}{r}
\min _{\mathbf{x}}{ } \mathbf{c}^{T} \mathbf{x} \\
\boldsymbol{A x} \leq \mathbf{b}
\end{array}
$$

- floating point variables
- $\mathbf{x} \in \mathbb{R}^{n}$
- linear program (LP)
- integer variables
- $\mathbf{x} \in \mathbb{Z}^{n}$
- (linear) integer program (IP)
- binary variables
$-\mathbf{x} \in\{0,1\}^{n}$
- float and integer variables
- \mathbf{x} is split into two groups of variables, $\mathbf{x}_{\mathbf{I}}$ and $\mathbf{x}_{\mathbf{F}}$
- $\mathbf{x}_{\mathbf{F}} \in \mathbb{R}^{n_{1}}$ and $\mathbf{x}_{\mathbf{I}} \in \mathbb{Z}^{n_{2}}$
- mixed integer program (MIP)

3.5 Variations of the standard form

- Optimization problem:

$$
\begin{aligned}
& \min _{\mathbf{x}} \mathbf{c}^{T} \mathbf{x} \\
& A \mathrm{x} \leq \mathrm{b}
\end{aligned}
$$

- switch min and max
- switch \leq and \geq
- include constraints with = as separate category
- require all variables to be positive (≥ 0)
- Example Optimization problem:

$$
\begin{aligned}
& \max _{\mathbf{x}} \quad \mathbf{c}^{T} \mathbf{x} \\
& A \mathbf{x} \leq \mathbf{b} \\
& \mathbf{x} \geq 0
\end{aligned}
$$

3.6 Comments about formulations

Definition 1. A polyhedron P is a subset of \mathbb{R}^{n} described by a finite set of linear constraints. $P=\left\{x \in \mathbb{R}^{n}: A \mathbf{x} \leq \mathbf{b}\right\}$

Definition 2. A polyhedron $P \subseteq \mathbb{R}^{n_{1}+n_{2}}$ is a formulation for a set $X \subseteq \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}$ if and only if $X=$ $P \cap\left(\mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$.

Definition 3. A convex combination of points from a set $S, x_{1}, x_{2}, \ldots, x_{k} \in S$, is any point of form $\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k}$, where $\theta_{i} \geq 0, i=1 \ldots k, \sum_{i=1}^{k} \theta_{i}=1$. A set S is convex iff any convex combination of points in S is in S.

Definition 4. The convex hull conv S is the set of all convex combinations of points in S

- The formulation has to enclose all feasible integer points, but no infeasible integer points
- Runtime depends on
- number of variables
- number of constraints
- tightness of fit
- Formulation A is at least as strong as B if $A \subseteq B$
- Formulation A is stronger than B if $A \subset B$
- A formulation A is ideal if $\operatorname{conv}($ feasible solutions $)=A$

3.7 Graphical Example

$$
\begin{array}{r}
\max _{x_{1}, x_{2}} \quad 100 x_{1}+64 x_{2} \\
50 x_{1}+31 x_{2} \leq 250 \\
3 x_{1}-2 x_{2} \geq-4 \\
x_{1} \geq 0 \\
x_{2} \geq 0 \\
x_{1}, x_{2} \in \mathbb{Z}
\end{array}
$$

- Rounded solution might not be feasible
- Rounded solution might be far from optimal solution

3.8 Different Components of Optimization in the literature

- Modeling:
- How to formulate an application problem as a standard optimization problem?
- Algorithm Development:
- How to derive new optimization algorithms for standard optimization problems?
- How to derive new optimization algorithms for specialized optimization problems?
- Optimization Theory:
- Finding convergence guarantees, bounds, ... of optimization algorithms

3.9 Different Components of Optimization in Visual Computing

- Modeling:
- propose an interesting problem formulation for a new or an existing problem in visual computing?
- Algorithm Development:
- propose a new algorithm for a specific optimization problem in visual computing
- Modeling + Algorithm Development
- Theory
- typically not done in visual computing, but in optimization and machine learning

3.10 How to solve an IP Problem?

- use a standard solver such as Matlab, Gurobi, Mosek, ... and see what happens
- create a new heuristic solver

3.11 Branch and Bound

- How to create upper and lower bounds for (the objective value of) the solution?
- The LP relaxation is a lower bound for the optimal solution
- Any particular feasible solution is an upper bound for the optimal solution
- If we solve the LP relaxation of an MILP problem we distinguish 3 cases:
- LP is infeasible \rightarrow MILP is infeasible
- Optimal LP solution is feasible solution for MILP problem \rightarrow optimal solution
- LP is feasible and optimal LP solution is not feasible for MILP \rightarrow lower bound
- First two cases we are finished, third case we branch (recursively)
- The most common way to branch is to do the following
- Select a variable i whose value \hat{x}_{i} is fractional in the LP solution
- Create two subproblems:
- Add constraint $x_{i} \leq\left\lfloor\hat{x}_{i}\right\rfloor$
- Add constraint $x_{i} \geq\left\lceil\hat{x}_{i}\right\rceil$

4 Example Problems

4.1 Knapsack Problem

- Input:
- a set of items i with values ν_{i} and weights w_{i}
- a knapsack with maximum capacity c
- Goal: pack a subset of items into the knapsack, such that
- the sum of weights does not exceed the capacity C
- the sum of the values is maximized
- Example

$$
C=10
$$

$$
w_{1}=5, v_{1}=3
$$

$$
w_{2}=8, v_{2}=7
$$

$$
w_{3}=3, v_{3}=5
$$

- Formulation:
- variables: $x_{i}=1$ means we pack item i

$$
\begin{array}{r}
\min _{\mathbf{x}} \quad \mathbf{v}^{T} \mathbf{x} \\
\mathbf{w}^{T} \mathbf{x} \leq c \\
x_{i} \in 0,1
\end{array}
$$

- Difficulty:
- NP-hard
- (pseudo-polynomial) Dynamic Programming solution exists for integer weights and capacity.

4.2 Matlab Code

C $=750$
weights $=[70 ; 73 ; 77 ; 80 ; 82 ; 87 ; 90 ; 94 ; 98 ; 106 ; 110 ; 113 ; 115 ; 118 ; 120]$; values $=[135 ; 139 ; 149 ; 150 ; 156 ; 163 ; 173 ; 184 ; 192 ; 201 ; 210 ; 214 ; 221 ; 229$; 240];
LZero $=$ zeros(length(weights), 1);
LOne = ones(length(weights), 1);
LCount = 1:length(weights);
tic;
intlinprog(-values, LCount, weights', C, [], [], LZero, LOne)
toc;

4.3 Map Labeling

- Input:
- a set of map objects i where each object has a discrete set of possible label positions j
- costs \mathbf{c} for each label placement
- Goal: place at least one label per object without overlap
- Illustration: two cities one river

- Variables
- $x_{i j}=1$ if label for object i is placed at position j
- Constraints:
- Binary constraints:

$$
x_{i j} \in\{0,1\}
$$

- Coverage constraint - each element is labeled exactly once:

$$
\forall i \quad \sum_{j} x_{i j}=1
$$

- Non-overlap for conflicting placements:
- for each pair of overlapping placements $i j$ and $l m$

$$
x_{i j}+x_{l m} \leq 1
$$

- Objective: $\min \sum_{i} \sum_{j} c_{i j} x_{i j}$

4.4 Assignment Problem

- Input:
- n people to carry out n jobs
- $c_{i j}$: cost of assigning person i to job j
- Goal: assign each person to exactly one job, so that each job has one person assigned to it.
- Illustration:
people $i \quad$ jobs j

- Variables
- $x_{i j}=1$ if person i is assigned to job j
- Objective:

$$
\min \sum_{i} \sum_{j} c_{i j} x_{i j}
$$

- Constraints:
- Binary constraints:

$$
x_{i j} \in\{0,1\}
$$

- Limited work: each person i does exactly one job

$$
\forall i \quad \sum_{j} x_{i j}=1
$$

- Coverage constraint - each job is done by one person:

$$
\forall j \quad \sum_{i} x_{i j}=1
$$

- Difficulty:
- Hungarian Method (Kuhn-Munkres algorithm or Munkres assignment algorithm)
- Auction algorithm

4.5 Tourist Map Layout

- Input:
- overview map with Points of Interest (POIs)
- detail maps for each POI
- positions for detail maps
- $\operatorname{costs} c_{i j}$ for assigning POI i detail map position j
- Goal: assign each detail map to one position.
- Illustration:

m1
m2
m3
- Variables
- $x_{i j}=1$ if map i is assigned to position j
- Objective:

$$
\min \sum_{i} \sum_{j} c_{i j} x_{i j}
$$

- Constraints:
- Binary constraints:

$$
x_{i j} \in\{0,1\}
$$

- Each map i is assigned once

$$
\forall i \quad \sum_{j} x_{i j}=1
$$

- No overlap between maps:

$$
\forall j \quad \sum_{(i, j) \in O_{j}} x_{i j}=1
$$

- O_{j} is the set of all placements that overlap position j
- Literature: Birsak et al., "Automatic Generation of Tourist Brochures", Eurographics 2014.

4.6 Tiling

- Input:
- a set of tiles i
- a domain consisting of positions j
- costs $c_{i j}$ for assigning tile i to position j
- minimum and maximum number of times tile i is allowed to be used ($\min _{i}, \max _{i}$)
- Goal: cover the domain with the given tiles
- Illustration:

- Variables
- $x_{i j}=1$ if leftmost square of tile i is assigned to position j
- Objective:

$$
\min \sum_{i} \sum_{j} c_{i j} x_{i j}
$$

- Constraints:
- Binary constraints:

$$
x_{i j} \in\{0,1\}
$$

- Each tile i is assigned between its within its allowed limits

$$
\forall i \quad \min _{i} \leq \sum_{j} x_{i j} \leq \max _{i}
$$

- No overlap between squares in the domain:

$$
\forall j \quad \sum_{(i, j) \in O_{j}} x_{i j}=1
$$

- O_{j} is the set of all tile placements that overlap position j

4.7 Shape Matching

- Input:
- two shapes where each shape has n vertices.
- a cost $c_{i j}$ for assigning vertex i from shape 1 to vertex j on shape 2 ,
- Goal: assign each vertex on shape 1 to exactly one vertex on shape 2
- Formulation: identical to the assignment problem
- Literature:
- Vestner et al., "Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel Density Estimation in the Product Space", CVPR 2017.

4.8 Camera Placement

- Input:
- a domain sampled into positions p
- a set of possible camera positions i
- Goal: select a minimal set of cameras that cover the domain
- Illustration:

- Variables
- $x_{i}=1$ if camera position i is selected
- Objective:

$$
\min \sum_{i} x_{i}
$$

- Constraints:
- Binary constraints:

$$
x_{i} \in\{0,1\}
$$

- Position conflict constraints

$$
\forall i \quad \sum_{j \in N_{i}} x_{j} \leq 1
$$

- $\quad N_{i}$ is the set of locations that conflict with location i
- Visibility constraint:

$$
V \mathbf{x} \geq 1
$$

- the $i^{\text {th }}$ column of \boldsymbol{V} is a binary mask that encodes what positions are seen by camera i

4.9 Graph Review

- Graph (V, E)
- V is a set of nodes
- E is a set of edges
- $E(S)=\{e=(i, j): i, j \in S\}$
- $\delta(S)=\{e=(i, j): i \in S$ and $j \in V \backslash S\}$
- $\delta(i)$ are all edges incident to node i.
- A tree is a connected graph with $|V|-1$ edges.

4.10 Minimum Spanning Tree

- Input:
- a graph (V, E)
- the $\operatorname{cost} c_{e}$ for selecting edge $e \in E$.
- Goal: find a minimum cost spanning tree
- Variables
- $x_{e}=1$ if edge e is selected
- Binary constraints:

$$
x_{e} \in\{0,1\}
$$

- Number of edges constraint:

$$
\sum_{e \in E} x_{e}=n-1
$$

- Cut constraint:

$$
\forall S \subset V, S \neq \varnothing, V \quad \sum_{e \in \delta(S)} x_{e} \geq 1
$$

- Objective function:

$$
\min \sum_{e \in E} c_{e} x_{e}
$$

- We call the linear relaxation of this formulation $P_{c u t}$
- Alternative constraint: subtour elimination constraint

$$
\forall S \subset V, S \neq \varnothing, V \quad \sum_{e \in E(S)} x_{e} \leq|S|-1
$$

- We call the resulting linear relaxation of the formulation $P_{s u b}$
- Notes:
- $P_{\text {sub }}$ is the convex hull of the set of feasible solutions.
- $P_{s u b}$ is a strictly better formulation than $P_{c u t}$.

4.11 Traveling Salesman

- Input:
- a graph (V, E)
- the cost c_{e} for selecting edge $e \in E$.
- Goal: find a minimum cost tour
- Variables
- $x_{e}=1$ if edge e is selected
- Binary constraints:

$$
x_{e} \in\{0,1\}
$$

- Number of incident edges constraint:

$$
\forall i \quad \sum_{e \in \delta(i)} x_{e}=2
$$

- Cut constraint:

$$
\forall S \subset V, S \neq \varnothing, \quad \sum_{e \in \delta(S)} x_{e} \geq 2
$$

- Objective function:

$$
\min \sum_{e \in E} c_{e} x_{e}
$$

- Alternative constraint: subtour elimination constraint

$$
\forall S \subset V, 2 \leq|S| \leq|V|-1 \quad \sum_{e \in E(S)} x_{e} \leq|S|-1
$$

- Similarly, we call the resulting linear relaxations $P_{c u t}$ and $P_{\text {sub }}$
- $P_{\text {cut }}=P_{\text {sub }}$
- Neither is the convex hull of the feasible points

4.12 City Exploration

- Input:
- a city map as graph (V, E)
- $\mathbf{c} \in \mathbb{R}^{|E|}$ - the attractiveness of each edge
$-\mathbf{t} \in \mathbb{R}^{|E|}$ - time it takes to walk along an edge
- T-maximum time for the walk
- a designated start node s and end node e
- Goal: find a walk through the city from from start node to end node that explores the most attractive edges but stays under the time limit.
- Illustration

- Variables
$-\quad x_{i}=1$ if edge i is selected
- $\quad v_{j}=1$ if vertex j is selected
- Binary constraints:

$$
x_{i}, v_{j} \in 0,1
$$

- Time constraint:

$$
\mathbf{t}^{T} \mathbf{x} \leq T
$$

- Connection constraint:

$$
\sum_{i \in N_{j}} x_{i}=v_{j} \quad \sum i \in N_{s} x_{i}=1 \quad \sum_{i \in N_{e}} x_{i}=1
$$

- $\quad N_{j}$ is the set of edges incident to vertex j
- Objective function:
$-\max \mathbf{c}^{T} \mathbf{x}$
- Cycles:
- the formulation can create closed cycles
- solution 1: lazy constraint adding
- solution 2: add constraints that forbid cycles (similar to MST and TS formulations)

5 MIP Modeling Techniques

5.1 AND of variables

- " y is true if all elements in \mathbf{x} are true. y is false otherwise.":

$$
y=x_{0} \wedge x_{1} \wedge \ldots \wedge x_{N-1}
$$

- y and \mathbf{x} are Boolean variables. $x_{0}, x_{1}, \ldots, x_{N-1}$ are the elements in $\mathbf{x} . N$ is the size of \mathbf{x}.
- Trivial way to model:

$$
y=x_{0} x_{1} \ldots x_{N-1}
$$

It is not going to work!

- As linear inequalities:

$$
0 \leq \sum \mathbf{x}-N y \leq N-1
$$

- Example:
- Vertex configurations in a 2D triangle-quad hybrid mesh:

$C_{j} m$ is the m-th configuration for vertex $v_{j} . C_{j} m$ contains $E_{1}, E_{4}, E_{6}, E_{9}$, and E_{11} out of v_{j} 's twelve adjacent edges:

$$
C_{j} m=!E_{0} \wedge E_{1} \wedge!E_{2} \wedge!E_{3} \wedge E_{4} \wedge!E_{5} \wedge E_{6} \wedge!E_{7} \wedge!E_{8} \wedge E_{9} \wedge!E_{10} \wedge E_{11}
$$

As linear inequalities:

$$
0 \leq\left(1-E_{0}\right)+E_{1}+\left(1-E_{2}\right)+\left(1-E_{3}\right)+E_{4}+\left(1-E_{5}\right)+E_{6}+\left(1-E_{7}\right)+\left(1-E_{8}\right)+E_{9}+\left(1-E_{10}\right)+E_{11}-12 y \leq 11
$$

5.2 OR of variables

- " y is true if any element in \mathbf{x} is true. y is false otherwise.":

$$
y=x_{0} \vee x_{1} \vee \ldots \vee x_{N-1}
$$

- As linear inequalities:

$$
-N+1 \leq \sum \mathbf{x}-N y \leq 0
$$

- Example:
- Converge constraint: a vertex is "covered" if and only if at least one of the edges that are within a close proximity is selected.

$$
v_{i}=e_{0} \vee e_{1} \vee \ldots \vee e_{N-1}
$$

v_{i} is the Boolean variable indicating if the vertex is covered. $e_{0}, e_{1}, \ldots, e_{n-1}$ are Boolean variables of edges within a close proximity to the vertex.

- For a minimal-vertex cover problem, we may require that the coverage variables of all vertices are true while minimizing the number of selected edges.

5.3 XOR of variables

- " y is true if elements in \mathbf{x} sum to odd. y is false if elements in \mathbf{x} sum to even."

$$
y=x_{0} \oplus x_{1} \oplus \ldots \oplus x_{N-1}
$$

- As linear inequalities:

$$
y=x_{0}+x_{1}+\ldots+x_{N-1}-2 t
$$

t is an integer slack variable. $0 \leq t \leq N-1$.

- Alternatively, model it as a sequence of 2-inputs XORs (the t variables become Booleans).

5.4 Special order set (SOS)

- Special Ordered Sets of type 1 (SOS1):
- Given an ordered set of variables, \mathbf{q}, at most one element in \mathbf{q} can be non-zero.
- Special Ordered Sets of type 2 (SOS2):
- Given an ordered set of variables, \mathbf{q}, at most two elements in \mathbf{q} can be non-zero. And if two elements are non-zero, they must be consecutive in their ordering.
- Supported by popular MIP solvers such as Gurobi and IBM CPLEX. These solvers use special branching strategies to take advantage of SOSs.
- Examples:
- A SOS1 set, \mathbf{x}, of Boolean variables $x_{0}, x_{1}, \ldots, x_{N-1}$, means that:

$$
x_{0}+x_{1}+\ldots+x_{N-1} \leq 1
$$

Knight8

- SOS2: "knight8" template for translational symmetry in urban layout design:
- Integer programming for urban design. Hao Hua, Ludger Hovestadt, Peng Tang, and Biao Li. European Journal of Operational Research (EJOR), 2018.

5.5 Exhaustive enumeration of all feasible solutions of a (Boolean) IP problem

- Let \mathbf{Z} denotes a feasible solution of a IP problem with only Boolean variables. We can forbid \mathbf{Z} to be feasible, that is,

$$
\mathbf{Z} \wedge F=\varnothing
$$

where F is the feasible region of the problem, by adding the following constraint:

$$
\sum_{0 \leq i \leq N-1}\left(x_{0} \text { if } Z_{i} \text { is true, or }\left(1-x_{i}\right) \text { if } Z_{i} \text { is false }\right) \leq N-1
$$

to the IP formulation. \mathbf{x} denotes the variables. N is the number of variables.

- An enumeration of unique feasible solutions can be done by repeatedly solving the IP problem with all previously retrieved solutions forbidden.
- An exhaustive enumeration proceeds until the problem becomes infeasible.
- Examples:
- Given a IP with three Boolean variables, x_{0}, x_{1}, and x_{2}, adding the following constraint would forbid $(0,1,0)$ as a feasible solution:

$$
\left(1-x_{0}\right)+x_{1}+\left(1-x_{2}\right)<=2
$$

- Exhaustive enumeration of triangle-quad tilings in a 12-gon with side length 2.

5.6 Big- M method

- Use Boolean slack variables with sufficiently large coefficients to allow constraints to be "deactivated".
- That is, rewriting a linear constraint:

$$
a^{T} \mathbf{x} \leq b
$$

to be:

$$
a^{T} \mathbf{x} \leq b+M y
$$

would allow it to be violated. M is a sufficiently large positive constant and y is a Boolean slack variable. When it is violated, y is true.

- Optionally, add y to the objective function (to minimize) to introduce penalty for the constraints to be violated.
- Example:
- "Constrain the union of two (mutually exclusive) constraints to be true":

$$
a_{0}^{T} \mathbf{x}_{\mathbf{0}} \leq b_{0} \quad \text { or } \quad a_{1}^{T} \mathbf{x}_{\mathbf{1}} \geq b_{1}
$$

- As linear inequalities:

$$
\begin{gathered}
a_{0}^{T} \mathbf{x}_{0} \leq b_{0}+M(1-y) \\
a_{1}^{T} \mathbf{x}_{1} \geq b_{1}-M y
\end{gathered}
$$

where M is a sufficiently big positive constant and y is a Boolean slack variable.

- Example:

$$
x \leq 2 \quad \text { or } \quad x \geq 6
$$

is reformulated as:

$$
\begin{gathered}
x \leq 2+M(1-y), \\
x \geq 6-M y
\end{gathered}
$$

- Discussions
- Many modeling techniques in MIP are variations of the big- M method.
- In general, big- M methods are more preferable than the equivalent non-linear formulations.
- M should be kept as small as possible. Very big M impacts performance.
- Literature:
- Indicator Constraints in Mixed-Integer Programming. Andrea Lodi, Amaya Nogales-Gómez, Pietro Belotti, Matteo Fischetti, Michele Monaci, Domenico Salvagnin, and Pierre Bonami. SCIP Workshop 2014.
- Integer Programming Formulations 2. James Orlin. Course notes of Optimization Methods in Management Science on MIT OCW.

6 Quadratic Programming

6.1 General Form

- General form:

$$
\begin{array}{r}
\min _{\mathbf{x}} \frac{1}{2} \mathbf{x}^{T} \boldsymbol{Q} \mathbf{x}+\mathbf{c}^{T} \mathbf{x} \\
\boldsymbol{A} \mathbf{x} \leq \mathbf{b}
\end{array}
$$

- $\mathbf{x} \in \mathbb{R}^{n}$ is a vector of variables
- $\mathbf{c} \in \mathbb{R}^{n}$ is a vector with known entries
- $\boldsymbol{Q} \in \mathbb{R}^{n \times n}$ is a symmetric matrix with known entries
- $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ is a matrix. Each of the m rows of the matrix define the coefficients of a linear inequality.
- $\mathbf{b} \in \mathbb{R}^{m}$ is a vector. Each entry b_{i} is on the right hand side of inequality i.

6.2 Comments

- if $Q>0$ (the matrix is positive-definite) the optimization is convex

7 Quadratic Integer Programming Examples

7.1 Quadratic Assignment

- Input:
- a set of n facilities i
- a set of n possible facility location j
- costs $c_{i} j k l$ for assigning facilty i to location j and facility k to location l
- Goal: assign facilities to grid cells to minimize costs
- Variations:
- costs $c_{i} j k l$ can be modeled arbitrarily
- $\operatorname{costs} c_{i} j k l$ are modeled as the product $c_{i} j k l=f_{i} k d_{j} l$, where $f_{i} k$ is a flow between facility i and k and $d_{j} l$ is a distance between j and l. This is the classical quadratic assignment problem.
- Variables
- $x_{i j}=1$ if facility i is assigned to location j
- Objective:

$$
\min \sum_{i}^{n} \sum_{j}^{n} \sum_{k}^{n} \sum_{l}^{n} c_{i j k l} x_{i j} x_{k l}
$$

- Constraints:
- Binary constraints:

$$
x_{i j} \in\{0,1\}
$$

- Non-overlap: each facility i has exactly one position

$$
\forall i \quad \sum_{j} x_{i j}=1
$$

- Coverage: each position is covered by exactly one facility

$$
\forall j \quad \sum_{i} x_{i j}=1
$$

- Literature: Loiola et al., "A survey for the quadratic assignment problem", European Journal of Operational Research 2007.

7.2 Quadratic Assignment for Images

- Input:
- a set of n images with image distances $d_{i j}$
- a set of n possible image positions with distances $g_{k l}$
- costs $c_{i j k l}=f\left(d_{i k}, g_{j l}\right)$
- Goal: assign images to grid cells to minimize the costs
- Variables
- $x_{i j}=1$ if image i is assigned to grid cell j
- Objective:

$$
\min \sum_{i}^{n} \sum_{j}^{n} \sum_{k}^{n} \sum_{l}^{n} c_{i j k l} x_{i j} x_{k l}
$$

- Constraints:
- Binary constraints:

$$
x_{i j} \in\{0,1\}
$$

- Non-overlap: each image i has exactly one position

$$
\forall i \quad \sum_{j} x_{i j}=1
$$

- Coverage: each position is covered by exactly one image

$$
\forall j \quad \sum_{i} x_{i j}=1
$$

- Literature: Fried et al., "IsoMatch: Creating Informative Grid Layouts", Eurographics 2015.

7.3 Quadratic Assignment for Shape Matching

- Literature:
- Dym et al., DS++: A Flexible, Scalable and Provably Tight Relaxation for Matching Problems, ACM TOG 2017.
- Kezurer et al., Tight Relaxation of Quadratic Matching, SGP 2015.

7.4 Joint Segmentation

- Input:
- Two shapes. Each shape is subdivided into smaller patches P_{1} and P_{2}, respectively
- A set of candidate segments for each shape: S_{1} and S_{2}. Each segment consists of multiple patches.
- A cost vector \mathbf{c} where $\mathbf{c}_{\mathbf{i j}}$ is the cost selecting a segment j in shape i.
- A cost vector \boldsymbol{d} where $d_{i j}$ encodes the cost of mapping segment i in shape one to segment j in shape two.
- A cost matrix \boldsymbol{Q} where $q_{i j k l}$ encodes the cost of mapping segment i in shape one to segment j in shape two and segment k in shape one to segment l in shape two.
- Variables:
- $x_{i j}=1$ if segment j is selected from shape i.
- $p_{i j}=1$ if patch j is selected from shape i.
- $m_{i j}$ if segment i in shape one maps to segment j in shape two.
- Literature:
- Huang et al., Joint-Shape Segmentation with Linear Programming, ACM TOG 2011.

7.5 Fit and Diverse Sampling

8 Quadratically Constrained Quadratic Programming

8.1 General Form

- General form:

$$
\begin{array}{r}
\min _{\mathbf{x}} \frac{1}{2} \mathbf{x}^{T} \boldsymbol{Q}_{\mathbf{0}} \mathbf{x}+\mathbf{c}_{\mathbf{0}}{ }^{T} \mathbf{x} \\
\mathbf{x}^{T} \boldsymbol{Q}_{\boldsymbol{i}} \mathbf{x}+\mathbf{c}_{\mathbf{i}}^{T} \mathbf{x} \leq b_{i}
\end{array}
$$

- $\mathbf{x} \in \mathbb{R}^{n}$ is a vector of variables
- $\mathbf{c}_{\mathbf{i}} \in \mathbb{R}^{n}$ are vectors with known entries
- $\boldsymbol{Q}_{i} \in \mathbb{R}^{n \times n}$ are symmetric matrices with known entries
- $\mathbf{b} \in \mathbb{R}^{m}$ is a vector. Each entry b_{i} is on the right hand side of inequality i.

8.2 Mixed Integer Quadratically Constrained Programming

- Can be solved by commercial solvers

