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ABSTRACT

Quad-dominant (QD) meshes, i.e., three-dimensional, 2-manifold polygonal meshes

comprising mostly four-sided faces (i.e., quads), are a popular choice for many ap-

plications such as polygonal shape modeling, computer animation, base meshes for

spline and subdivision surface, simulation, and architectural design. This thesis in-

vestigates the topic of connectivity control, i.e., exploring different choices of mesh

connectivity to represent the same 3D shape or surface. One key concept of QD

mesh connectivity is the distinction between regular and irregular elements: a vertex

with valence 4 is regular; otherwise, it is irregular. In a similar sense, a face with four

sides is regular; otherwise, it is irregular. For QD meshes, the placement of irregular

elements is especially important since it largely determines the achievable geometric

quality of the final mesh.

Traditionally, the research on QD meshes focuses on the automatic generation

of pure quadrilateral or QD meshes from a given surface. Explicit control of the

placement of irregular elements can only be achieved indirectly. To fill this gap, in

this thesis, we make the following contributions. First, we formulate the theoretical

background about the fundamental combinatorial properties of irregular elements

in QD meshes. Second, we develop algorithms for the explicit control of irregular

elements and the exhaustive enumeration of QD mesh connectivities. Finally, we

demonstrate the importance of connectivity control for QD meshes in a wide range

of applications.
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Chapter 1

INTRODUCTION

Polygonal meshes are important representations of geometric surfaces. Such rep-

resentations are based on the idea of cell decomposition: a continuous, geometric

surface is represented with an assembly of (possibly many) simple polygonal cells. In

particular, quad-dominant (QD) meshes, which comprise mostly 4-sided faces (i.e.,

quads), are extensively studied. They are a popular choice for many applications such

as polygonal shape modeling (Southern (2011)), computer animation, base meshes for

spline and subdivision surface [Panozzo and Puppo (2010); Stam and Loop (2003);

Myles et al. (2008); Sederberg et al. (2003, 2004)], simulation [D’Azevedo (2000);

Shepherd and Johnson (2008)], and architectural design [Liu et al. (2006); Pottmann

et al. (2008); Eigensatz et al. (2010); Zadravec et al. (2010); Yang et al. (2011)].

This thesis investigates the topic of connectivity control, i.e., exploring different

choices of mesh connectivity to represent the same 3D shape or surface. For QD

meshes, this is an especially important issue since the achievable geometric quality

of the final mesh is largely determined by the mesh connectivity chosen in the first

place. Examples are shown in Figure 1.1 and 1.2. The reasons are given next.

To begin with, a major reason behind QD meshes’ popularity is due to the fact

that there exists a natural matching between QD meshes and cross fields, i.e., an

assignment of a pair of dominant directions to each surface point. In a QD mesh, a

vertex is typically adjacent to four edges, or two pairs of opposing edges, that can be

naturally aligned to the pair of directions in the cross field. The same can be said

about the sides of a face. To generate high quality QD meshes, the mesh lines should

align to the cross field of the underlying principal curvature directions.

1



Figure 1.1: Comparing Different Ways to Present the Same Architectural Tower
Model as Pure Quadrilateral Meshes.

Left: the input mesh with a large number of irregular vertices and small faces. Second
left to right: five requadrangulations of the input mesh. The first and second both
consider the hyperboloid-shaped facade on the front as an 8-sided patch, while the
former favors uniform quad size and the latter favors alignment of irregular vertices.
The third alternatively considers the front facade as a 4-sided patch, and four valence-
3 irregular vertices are removed. The fourth no longer preserves the sharp feature on
the right, and the two adjacent patches are merged. It has fewer irregular vertices
at the cost of less sharp feature fidelity. The fifth discards all sharp features on the
front in exchange for even fewer irregular vertices.

It follows that one important concept when dealing with QD meshes is the dis-

tinction between regular and irregular elements (vertices and faces): a vertex with

valence 4 is regular; otherwise, it is irregular. In a similar sense, a face is regular if it

has 4 sides; otherwise, it is irregular. An irregular element can no longer align with

a cross field. Rather, it corresponds to a field singularity of the matching index. For

example, given a cross field of principal curvature directions, elements with degree

lower than 4 are best positioned at areas with positive Gaussian curvatures (i.e., el-

liptical regions), and elements with degree higher than 4 are best positioned at areas

with negative Gaussian curvatures (i.e., hyperbolic regions).

Irregular vertices are also important for other reasons. It has been shown that

irregular vertices are necessary at transition regions between the denser and sparser

parts of the mesh Panozzo and Puppo (2010); Myles et al. (2010). Irregular vertices

2



Figure 1.2: Comparing Irregular Vertices and Irregular Faces in the Context of Design
and Construction.

In general, irregular vertices are necessary to maintain sharp features (corners and
edges), but they create higher angle deviations in mesh lines in smooth regions (left).
Irregular faces lead to smoother mesh lines, but they cannot maintain sharp features
(right). The ability to model with a mixture of irregular vertices and faces would give
more flexibility to the user, e.g., creating a design with sharp features and smooth
mesh lines (middle).

also determine the layout of separatrices in aQD mesh. That is, edge strips connecting

one irregular vertex to another (possibly the same) irregular vertex or mesh boundary.

Separatrices partition the mesh into several regular 2D arrays of quads that can be

mapped into the 2D plane to obtain a parameterization. To minimize the number of

regular patches, irregular vertices should be positioned in the way that the separatrices

are aligned as much as possible Bommes et al. (2011); Tarini et al. (2011); Campen

et al. (2012).

Traditionally, the research about QD meshes focuses on the automatic genera-

tion of QD [Alliez et al. (2003); Marinov and Kobbelt (2006); Ray et al. (2006)]

or pure quadrilateral [Kälberer et al. (2007); Bommes et al. (2009); Zhang et al.

(2010)] meshes from a given surface, i.e., QD or quad remeshing. This is largely a

parameterization problem and is usually tackled by optimization approaches driven

by curvatures. For a broader background on this topic we suggest the survey by

Bommes et al. [Bommes et al. (2012)]. For automatic generation methods, control of
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the placement of irregular vertices is usually achieved indirectly by tweaking the op-

timization parameters [Bommes et al. (2009)] or editing the field singularities [Zhang

et al. (2006); Tong et al. (2006); Palacios and Zhang (2007); Ray et al. (2006, 2009)].

The process is often slow and unintuitive.

On the other hand, research on the connectivity aspects of QD meshes has

been relatively sparse. Examples include connectivity editing operators for quad

strips [Daniels et al. (2008); Bommes et al. (2011)] and certain types of irregular

elements [Maza et al. (1999); Tarini et al. (2010)], and combinatorial methods to

quadrangulate an empty region with specific goals [Schaefer et al. (2004); Nasri and

Yasseen (2009); Bessmeltsev et al. (2012); Takayama et al. (2013)]. However, none of

these offer a systematic analysis and editing framework for the connectivity control

of QD meshes.

To fill this gap, the aim of this thesis is to develop theories and algorithms for

the understanding and direct control of QD mesh connectivity, with the following

contributions:

• We present a novel study about the fundamental combinatorial properties and

the explicit control of irregular vertices in pure quadrilateral meshes (Chap-

ter 3).

• We extend the study to general QD meshes, of which irregular elements include

both vertices and faces (Chapter 4).

• We present a method for the efficient enumeration of all possible quadrangula-

tions (i.e., pure quadrilateral connectivities) with an upper bound of the number

of irregular vertices (Chapter 5).

The research results have led to the following technical papers (myself as the first

author):

4



• Connectivity Editing for Quadrilateral Meshes. Chi-Han Peng, Eugene Zhang,

Yoshihiro Kobayashi, and Peter Wonka. ACM Transactions on Graphics (Pro-

ceedings of ACM SIGGRAPH ASIA 2011). Peng et al. (2011); Peng and Wonka

(2013).

• Connectivity Editing for Quad-Dominant Meshes. Chi-Han Peng and Peter

Wonka. Eurographics Symposium on Geometry Processing (SGP) 2013. Peng

and Wonka (2013).

• Exploring Quadrangulations. Chi-Han Peng, Michael Barton, Caigui Jiang,

and Peter Wonka. ACM Transactions on Graphics (presented at SIGGRAPH

2014). Peng et al. (2014a).

• Computing Layouts with Deformable Templates. Chi-Han Peng, Yong-Liang

Yang, and Peter Wonka. ACM Transactions on Graphics (Proceedings of ACM

SIGGRAPH 2014). Peng et al. (2014b).

A detailed discussion about related work is given in the next chapter.
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Chapter 2

RELATED WORK

Polygonal mesh processing: The majority of research about polygonal mesh

processing is for triangle meshes and usually focuses on preserving geometric details

in the underlying surface or achieving optimal aspect ratio and size of triangles in

the mesh under a reasonable face count budget [Hoppe (1996); Desbrun et al. (1999);

Alliez et al. (2002)]. For a complete reference of past work in mesh processing we

refer the readers to [Botsch et al. (2010)].

QD Mesh Generation: There has been much recent work in the automatic

generation of a pure quadrilateral or QD mesh given an input triangular mesh. Typ-

ical approaches include tracing evenly spaced hyperstreamlines [Alliez et al. (2003);

Marinov and Kobbelt (2004); Dong et al. (2005); Bauer et al. (2010)], constructing

a global parameterization [Ray et al. (2006); Kälberer et al. (2007); Bommes et al.

(2009); Zhang et al. (2010); Bommes et al. (2013); Panozzo et al. (2014)], and gen-

erating a patch layout on the surface that facilitates quadrilateral remeshing [Dong

et al. (2006); Tong et al. (2006); Nieser et al. (2010b); Myles et al. (2010); Bess-

meltsev et al. (2012); Takayama et al. (2013)]. In general, the generation of pure

quadrilateral meshes is more challenging than generating general QD meshes because

discrete constraints are involved to ensure the resulting mesh is free of non-quad faces

(see [Bommes et al. (2009)] for a discussion). For approaches depending on hyper-

streamline tracing and global parameterizations, a guiding 4-way rotational symmetry

(4-RoSy) field is needed. The quality of the remeshes depends on the quality of the

fields, and this has led to work on generating geometry-aware fields either manu-

ally [Zhang et al. (2006, 2007); Palacios and Zhang (2007); Ray et al. (2008)] or
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automatically [Ray et al. (2009); Nieser et al. (2010a)]. Control of the placement of

irregular vertices is usually achieved indirectly by tweaking the optimization parame-

ters [Bommes et al. (2009)] or editing the field singularities [Zhang et al. (2006); Tong

et al. (2006); Palacios and Zhang (2007); Ray et al. (2006, 2009)]. The process is often

slow and unintuitive. Moreover, controlling singularities and irregular elements have

different degrees of freedom, see [Palacios and Zhang (2007)].

Contrary to the aforementioned field-guided methods, there has also been some

work in formulating combinatoric algorithms to quadrangulate an empty region with

specific goals such as having fewest irregular vertices possible [Schaefer et al. (2004);

Nasri and Yasseen (2009); Bessmeltsev et al. (2012); Takayama et al. (2013)]. Our

quadrangulation enumeration method ([Peng et al. (2014a)]) shares the same moti-

vation.

Alternative QD mesh generation methods include approaches work by vertex

alignments [Tchon and Camarero (2006); Lai et al. (2008)], space partitioning (oc-

tree [Marchal (2009)] or quadtree [Frey and Marchal (1998)]), or use segmentation

as an important ingredient [Marinov and Kobbelt (2006)]. The generated meshes

can also satisfy additional requirements, e.g., remeshing with planar quads [Liu et al.

(2006); Zadravec et al. (2010). Advancing fronts (i.e., paving) methods [Blacker and

Stephenson (1991); White and Kinney (1997); Park et al. (2007)] incrementally grow

quad faces from the patch boundaries and they could be used for finding and enu-

merating pure quadrilateral topologies. However, one problem is that the algorithm

does not terminate without a geometric heuristic and can grow fronts indefinitely.

QD Mesh Connectivity: There has been some work that stressed the impor-

tance of irregular element control, as the number, location and type of irregular

elements are often intrinsically linked to the geometric features on the surface [Ray

et al. (2006)]. See [Akleman and Chen (2006)] for a discussion on this topic. Irregu-
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lar elements are also important in many other aspects. The distribution of irregular

elements can impact the quality of inverse subdivision [Taubin (2002)]. As mentioned

previously, irregular elements are necessary at transition regions between the denser

and sparser parts of the mesh [Panozzo and Puppo (2010); Myles et al. (2010)]. For

pure quadrilateral meshes, irregular vertices also determine the layout of separatrices,

i.e., edge strips connecting one irregular vertex to another (possibly the same) irregu-

lar vertex or mesh boundary. Separatrices partition the mesh into several regular 2D

arrays of quads that can be mapped into the 2D plane to obtain a parameterization.

To minimize the number of regular patches, irregular vertices should be positioned in

the way that the separatrices are aligned as much as possible [Bommes et al. (2011);

Tarini et al. (2011); Campen et al. (2012)].

An early example of operators for the control of irregular elements in QD meshes

can be found in [Maza et al. (1999)], where a pair of triangles and a pair of valence-3

and valence-5 irregular vertices at diagonal positions can be moved together. Note

that these are a subset of all possible pair-wise irregular element movement operators

proposed in our studies [Peng et al. (2011); Peng and Wonka (2013)]. Local operators

have been proposed for pure quadrilateral mesh simplification [Tarini et al. (2010)].

Surprisingly, however, local operators such as quad collapse, edge split, vertex rota-

tion, and edge flip all increase the number of irregular vertices when applied to a

single irregular vertex. Therefore, it is important to investigate operators on larger

regions that do not increase the number of irregular vertices. Examples include op-

erators on quad strips [Daniels et al. (2008)], and so called GP operators [Bommes

et al. (2011)], which operate on non-aligned quad strips. We can find similar concepts

in related fields. In subdivision and spline surfaces, operators for editing T-junctions

in T-spline control meshes has been proposed [Sederberg et al. (2004)]. In crystallog-

raphy, Burgers vectors have been used to displace irregular vertices [Hull and Bacon
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(2001)].

Architectural Geometry: An important venue of applications for QD meshes,

as well as inspirations for many parts of this research, lies in the field of architectural

geometry. It is because QD meshes, especially the special class of planar quad (PQ)

meshes of which most faces are quad and close to planar, possess several favorable

properties for architecture (see the discussion in Glymph et al. (2004)). A strong

emphasis have been put on the generation of PQ meshes and variants for free-form

architectures [Liu et al. (2006); Zadravec et al. (2010); Pottmann et al. (2007b);

Schiftner and Balzer (2010); Liu et al. (2011); Jiang et al. (2014); Tang et al. (2014)].

For a detailed discussion of architectural geometry we refer the readers to [Pottmann

et al. (2007a)].
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Chapter 3

CONNECTIVITY EDITING FOR QUADRILATERAL MESHES

Quadrilateral and hexahedral meshes are popular choices in simulation and shape

modeling due to the natural tensor product property that they possess. Quadrilateral

meshes can also facilitate architectural modeling as well as texture and geometry

synthesis. Important aspects of a quadrilateral mesh include the location, orientation,

type, and number of irregular vertices. While there has been some work in quad mesh

connectivity editing Daniels et al. (2008); Bommes et al. (2011), achieving irregular

vertex control is challenging and many questions about what editing operations are

possible and impossible still need to be answered.

In this chapter, we propose three operations that move an irregular vertex pair

(two valence 3, two valence 5, or one valence 3 and one valence 5) over the mesh. To

show that these are fundamental operations for quad mesh editing, we will establish

the following properties:

• These editing operations impact the smallest possible region on the mesh and

are therefore as local as possible (in a convex region).

• A region containing only one irregular vertex cannot be edited.

• A region containing two irregular vertices can be edited by changing the location

of the irregular vertices within the region. However, they cannot be canceled.

Some irregular vertex pairs can be merged while others cannot, depending on

their graph distance in the initial configuration.

• A region with three irregular vertices can be edited by canceling or merging the

irregular vertices.
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• Our three movement operations can perform all possible edits within a (convex)

region that contains two irregular vertices.

While the three vertex pair movement operations are at the core of this chapter,

we also introduce several supplementary operations to control the type and number

of irregular vertices: splitting, merging, cancellation, and alignment. All of these op-

erations can be realized through three graph-level editing operations: quad collapses,

edge flips, and edge splits.

We do not extensively deal with the geometric consequence of mesh editing. We

consider feature edges in our implementation and analysis, but otherwise treat edit-

ing operations that result in isomorphic graphs as identical. Our analysis is based

on recent work in triangular mesh editing Li et al. (2010). However, we make the

contribution of providing the enumeration (and parameterization) of all valid requad-

rangulations given a regular convex region. Furthermore, while Li et al. Li et al.

(2010) demonstrate that it is possible to move an irregular vertex pair, we establish

the condition under which this is possible with an explicit algorithm to requadrangu-

late a region.

3.1 Chapter Overview

The input to our system is a quadrilateral mesh M that represents a closed man-

ifold surface. The valence of a vertex v in M , which we denote as l(v), is the number

of edges in the mesh incident to v. A vertex with a valence of n is denoted as vn,

e.g., v3 and v5. A v4 vertex is considered as regular, and vertices of other valences

are referred to as irregular. A pair of valence m and n vertices is denoted as m − n

pair.

To simplify the discussion, we only consider irregular vertices with a valence of 3

or 5. Other irregular vertices can be transformed to multiple v3 or v5 vertices through
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our atomic type change operations (Section 3.6).

The focus of this chapter is to introduce and analyze the following three operations:

3 − 5, 3 − 3, and 5 − 5 pair movement operations. To realize these operations, we

develop a three-level hierarchy of editing operations: basic operations, atomic semantic

operations, and the three pair-wise movement operations.

1. Basic operations (Section 3.2) include quad collapse, edge split, and edge flip.

All semantic operations are achieved by a combination of these three types of

operations.

2. Atomic semantic operations (Section 3.3) are single basic operations with se-

mantic interpretations. Users can generate and remove irregular vertices as well

as move, split, and merge adjacent irregular vertices.

3. Pair-wise movement operations (Section 3.4) include the aforementioned 3− 5,

3− 3, and 5− 5 pair movement operations. These operations are accomplished

by multiple atomic semantic operations.

In Section 3.5 we provide theoretical analysis of the proposed operations. We first

prove that it is impossible to requadrangulate a convex region containing a single

irregular vertex without introducing additional irregular vertices. Consequently, pos-

sible local operations require at least two irregular vertices. By analyzing all possible

connectivity edits for a pair of irregular vertices within a convex region, we conclude

that the three proposed irregular vertex pair movement operations are sufficient to

generate all possible local edits within a convex region containing two irregular ver-

tices.

In Section 3.6 we present several useful operations built upon the three pair-wise

movement operations. These additional operations can be used to reduce the number
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of irregular vertices, align 3−3 and 5−5 pairs, and merge one 3−3 or 5−5 pair into one

v2 or v6 vertex. The aforementioned editing operations are topological by design and

may lead to a loss of geometric details in the underlying surface and quadrilaterals

with poor aspect ratios. We provide several geometric operations to remedy such

problems. In Section 3.7 we compare our editing operations to the irregular vertex

editing operations for triangular meshes proposed in Li et al. (2010). In Section 3.8

several applications of our editing operations are shown.

3.2 Basic Operations

Our set of basic operations has the following desirable properties: First, the sup-

port for these operations is local. Second, their implementations are relatively easy

with a low computational cost. Third, it is straightforward to combine multiple basic

operations, incurring no limitations and special cases (Figure 3.1).

Quad Collapse: Quad collapse can be intuitively understood as merging a pair

of diagonally opposing vertices (v1, v2) sharing the same face. The face they share

will be deleted, and the valence of the merged vertex will be l(v1) + l(v2) − 2, while

the valence of the other pair of diagonally opposing vertices will be decreased by one

per vertex.

Edge Split: Edge split can be intuitively understood as bloating a pair of con-

nected edges (e1, e2) into one face and the central vertex v between them is split into

two. After an edge split, a new face and a new vertex will be created. The pair of

edges (e1, e2) separates the remaining edges incident to v1 into two groups containing

d1 and d2 edges, respectively. After the edge split, the valences of the two vertices

are d1 + 2 and d2 + 2, respectively. The valence of the other two vertices involved in

the operation will be increased by one.
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Figure 3.1: Basic Operations.

Quad collapse: a pair of diagonally opposing regular vertices (gray) is merged. The
face to be deleted is shown in red. The v3 vertices are shown in blue and the v6
vertex in red. Edge split: a pair of connected edges (green) is bloated into a face
(yellow). The v5 vertices are shown in orange. Edge flip: an edge (green) is flipped
in a counter-clockwise and clockwise direction. One way to realize an edge flip is by
one edge split followed by one quad collapse (shown below).

Edge Flip: Edge flip can be intuitively understood as rotating an edge in either

the counter-clockwise or clockwise direction. The valence of the two vertices on the

edge will be decreased by one, while the valence of the other two involved vertices

will be increased by one.

Quad collapse and edge split are inverse to each other; they are both atomic in

the sense that each cannot be realized by any combination of the other two basic

operations. On the other hand, the inverse of an edge flip is an edge flip in the other

direction; it is not atomic because it can be realized by one edge split and one quad

collapse.
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3.3 Atomic Semantic Operations

The influence of the aforementioned basic operations on the valence is non-trivial

and lacks semantic meaning, which makes it difficult to use them directly to control

irregular vertices. By providing semantic interpretations for basic operations we define

a collection of atomic semantic operations.

Adjacent 3− 5 Pair Movement: A pair of adjacent v3 and v5 vertices can be

moved in the direction of its six adjacent vertices (Figure 3.2).

Figure 3.2: Possible Directions of an Adjacent 3− 5 Pair Movement Operation.

Moving to the upper-left and upper-right corners are achieved by one quad collapse.
Moving to the lower-left and lower-right corners is achieved by one edge split. Moving
to the left and right is achieved by one edge flip. Faces adjacent to the 3 − 5 pair
are shown in gray to assist comparisons. In the lower-left and lower-right cases faces
created by edge split are shown in yellow.

v3(v5) Movement and 3− 5 Pair Generation: A v3 vertex can be moved to

one of its adjacent locations, and one adjacent 3 − 5 pair is created. Each direction

can be achieved by two kinds of quad collapses and two kinds of edge flips. Similarly,

a v5 vertex can be moved to one of its five adjacent locations, and one adjacent 3− 5
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pair is created. Each direction can be achieved by two kinds of edge splits and two

kinds of edge flips. Figure 3.3 shows one possible moving direction for a v3 and a v5

vertex.

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Examples of Moving an Irregular Vertex Upward from its Current Loca-
tion.

(a) to (c): the v3 vertex is moved upward by either (b) collapsing the face on the left
or (c) flipping the left edge clockwise. It can also be achieved by collapsing the face
on the right or flipping the right edge counter-clockwise. (d) to (f): the v5 vertex is
moved upward by either (e) splitting the edge pair on the left or (f) flipping the left
edge counter-clockwise. It can also be achieved by splitting the edge pair on the right
or flipping the right edge clockwise. Note that in all these scenarios a 3− 5 irregular
vertex pair is created as a result of the movement operation.

v3(v5) Movement and 3 − 5 Pair Removal: This operation is the inverse of

the operation described above. It can be understood by reading Figure 3.3 in the

reverse direction.

3− 3− 5− 5 generation/removal: By one edge flip two v3 and two v5 vertices

can be generated. Inversely two v3 and two v5 vertices can be removed by one edge

flip in the other direction.
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Type Change Operations: Type change operations increase or decrease vertex

valences. As mentioned before, all irregular vertices other than v3 or v5 can be

transformed into a set of v3 or v5 irregular vertices by using type changing operations.

A vertex’s valence can be increased by applying a quad collapse to one of its adja-

cent faces, at the cost of creating adjacent irregular vertices. For example, applying

a quad collapse to a v2 vertex with a regular diagonally opposing vertex can trans-

form the v2 vertex into a regular vertex, while decreasing valence of the other pair of

diagonally opposing vertices by one (Figure 3.4a). Similarly, a vertex’s valence can

be decreased by applying an edge split to one of the adjacent edge pairs between it,

at the cost of creating adjacent irregular vertices. For example, splitting a v6 vertex

along an edge pair that evenly separates its six adjacent edges will create two regular

new vertices, while increasing the other two vertices’ valence by one (Figure 3.4b).

(a) (b)

Figure 3.4: Applying Type Change Operations to Convert v2 and v6 Vertices into v3
and v5 Vertices.

(a) A v2 vertex is converted to two v3 vertices by one quad collapse. (b) A v6 vertex
is converted to two v5 vertices by one edge split.

3.4 Pair-wise Movement Operations

While the aforementioned atomic operations only have local influences, we can

move non-adjacent pairs of irregular vertices (3−5, 3−3, and 5−5) by a combination

of multiple atomic operations. We also show how the pair can be moved even when
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the shortest path between the vertices intersects some feature edge that has to be

preserved. These operations result in quads being inserted into and deleted from

the mesh. Therefore, we also need to interleave smoothing operations with these

operations to avoid degrading the mesh quality.

3− 5 Pair Movement: A non-adjacent 3− 5 pair can be moved together in the

same direction in the following three-step pipeline:

1. Move the v3 vertex to a user-specified adjacent location by applying a v3 move-

ment and 3− 5 pair generation operation.

2. Apply multiple adjacent 3− 5 pair movement operations to transport the gen-

erated 3− 5 pair toward the v5 vertex until they become adjacent.

3. Apply a v5 and 3− 5 pair removal operation to remove the 3− 5 pair and shift

the v5 vertex. The relative position of the two vertices remains the same.

Alternatively the pipeline can be executed reversely by moving the v5 vertex first

and then colliding the generated 3−5 pair toward the v3 vertex. Each movement has

four moving directions, which can be understood as moving on a 2D Cartesian grid

with a nearby regular vertex as the origin. After one movement the relative distance

between the 3− 5 pair, defined by the number of edges of their two connecting sepa-

ratrices (Definition 3.5.7) will be preserved. In Figure 3.5 the four moving directions

for 3− 5 pairs in different configurations are analyzed.

3− 5 Pair Movement with Sharp Features: The transportation of the gener-

ated 3− 5 pair in the second step does not need to follow the shortest path between

the irregular vertices. Figure 3.6 illustrates this with an example. If the generated

3−5 pair is transported through the shortest path, the sharp feature will be modified.

Alternatively, the generated 3 − 5 pair can be transported through a longer path to

avoid modifying the sharp feature.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Moving a 3− 5 Pair.

The four moving directions (red arrows) for 3−5 pairs with aligned (top row) and mis-
aligned (bottom row) separatrices. Each green line denotes a shortest path between
the pair. The blue faces denote the nearest unchanged quad strips that enclose the
affected region. The yellow and red faces are generated or deleted depending on which
direction the 3− 5 pair moves, while red faces denote the ones that are immediately
to be created or deleted. The length of the connecting path determines the number
of faces created or deleted in one movement.

3− 3 Pair Movement: The mechanics of moving a non-adjacent 3− 3 irregular

vertex pair is identical to moving a 3 − 5 pair. There are also four directions of

movement. The major difference is that the graph distance between the two irregular

vertices changes. We define the number of edges on each of the two connecting

separatrices as d1 and d2 (See Figure 3.7). If the two vertices are directly connected

by a separatrix one of these two values is equal to zero. One step of movement can be

labeled by the changes to (d1, d2) in one of the four possible ways: (+1,+1), (+1,−1),

(−1,+1), and (−1,−1).

5− 5 Pair Movement: This operation is similar to moving a 3− 3 pair in that

there are four directions of movement and the graph distance between the vertices
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(a) (b) (c) (d)

Figure 3.6: Moving a 3− 5 Pair Whose Shortest Path Intersects Sharp Features.

Faces generated in the process are shown in yellow and faces deleted are shown in
red. (a) The connecting path, shown in green, intersects the sharp feature shown in
grey. (b) to (d) The generated 3−5 pair is transported toward the v3 vertex through
an alternate path that avoids the sharp feature.

(a) (b) (c)

Figure 3.7: Examples of 3− 3 Pair Movement.

(a) to (b) The 3 − 3 pair is moved in the (−1,+1) direction (shown as red arrow).
(b) to (c) The 3 − 3 pair is moved again in the (+1,+1) direction. Generated faces
are shown in red.

changes in the same fashion.

UI Implementation: Figure 3.8 shows our UI implementation of the three pair-

wise movement operations. The four moving directions for 3 − 5, 3 − 3, and 5 − 5

pair movements are shown as colored arrow pairs to help the user predict the effect

of a movement before actually executing it.
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(a) (b) (c)

Figure 3.8: UI Implementation of the Three Pair-wise Movement Operations.

Each of the four possible moving directions is shown as one pair of arrows with the
same color.

3.5 Topological Analysis

In this section we provide theoretical analysis on why the three pair-wise movement

operations are fundamental. Unlike vector and tensor field editing in which it is

possible to move a singularity and cancel a singularity pair with opposite singularity

indexes, it is impossible to move an irregular vertex (Theorem 3.5.1), and topological

changes between a pair of irregular vertices have to follow specific constraints. For

example, an irregular vertex pair whose discrete Gaussian curvature sum to zero

cannot be canceled. The following theoretical discussion explains all possible edits

within a convex region containing one or two irregular vertices (v3 or v5). This

discussion explains why our suggested operations are the simplest possible operations

that do not increase the number of irregular vertices. Note that some terminologies

used in Theorem 3.5.1, 3.5.2, 3.5.3, and 3.5.4 are defined in Definitions 3.5.5, 3.5.6,

and 3.5.7.

Theorem 3.5.1 Consider a convex region R that contains exactly one irregular ver-

tex v0 in its interior. When l(v0), the valence of v0, is not a multiple of 4, it is

impossible to remesh the interior quadrilaterals of R to have a different configuration

that still contains only one irregular vertex.
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The proof of Theorem 3.5.1 is adapted from Li et al. (2010) and is omitted here.

The following three theorems deal with two irregular vertices in a convex region. A

convex N -sided polygonal region is regular if all N -sides have equal length measured

in graph distance. In this case we call the length of each side to be the side length of

the region.

Figure 3.9: All Possible Configurations of a Region that Contains a 3− 3 Pair.

Note that this figure extends to infinity. All possible requadrangulations of a specific
region would be a sub-grid (either blue or red) that is cut along a line n+m < c, where
c is a constant. Rα, the smallest region between the pair, is shown in blue, and the
smallest regular digons containing Rα are shown in grey. Each configuration is labeled
by its parameterization (m,n) and represented by a node positioned at (m,n) in a 2D
coordinate system rotated by π

4
. Every node has at most four neighbors, indicating

four possibilities of movement given a configuration. Note that each pair of nodes
(x, 0) and (0, x) on the boundaries (not including the v2 case) represent the same
degenerate case parameterized differently, thus each boundary configuration can also
have at most four neighbors. Note that the grids of configurations with even (red) and
odd (blue) L are disconnected, i.e., it is impossible to requadrangulate a configuration
with even L to any configuration with odd L and vice versa. Note that the grids of
configurations with odd and even L are dual to each other, i.e., each face corresponds
to a vertex and each pair of adjacent faces corresponds to an edge.

Theorem 3.5.2 Let R be a regular convex digon with a side length L. If R encloses a

3−3 irregular vertex pair, there are τ(L) mutually distinctive requadrangulations of R
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Figure 3.10: All Possible Configurations within a Regular Hexagon of Side Length
Six (Left) and Five (Middle) that Contains a 5− 5 Pair.

Each configuration is labeled by its parameterization (m,n, p). For brevity we show
all parameterizations in the right. Note that the grids of configurations with odd and
even L are dual to each other, i.e., each face corresponds to a vertex and each pair of
adjacent faces corresponds to an edge.

Figure 3.11: All Possible Configurations in a Region that Contains a 3− 5 Pair.

Each configuration is labeled by its parameterization (m,n). Notice they correspond
to translations over a regular 2D grid parameterized by the locations of the red and
yellow stars. Every node has at most four neighbors, indicating four possible moving
directions given a configuration.
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where τ(L) = N(N−1) when L is even and N2 when L is odd. Here N = bL
2
c. These

configurations can be parameterized by the set {(m,n) | m ≥ 0, n ≥ 0, 0 < m + n ≤

L− 2} (Figure 3.9). Any one-step requadrangulation from the case (m0, n0) must be

one of the following possible scenarios: (1) (m0 + 1, n0− 1), (2) (m0− 1, n0 + 1), (3)

(m0 + 1, n0 + 1), and (4) (m0− 1, n0− 1). The operations can correspond to distance-

preserving mutual spinning as well as distance-varying movement. Furthermore, when

R is not regular, the number of valid configurations is at most τ(L) where L is the

side length of the smallest regular digon that contains R.

Theorem 3.5.3 Let R be a regular convex hexagon with a side length L. If R encloses

a 5−5 irregular vertex pair, there are τ(L) mutually distinctive requadrangulations of

R where τ(L) = 3N(N − 1) when L is even and 3N2 when L is odd. Here N = bL
2
c.

These configurations can be parameterized by the set {(m,n, p) | m ≥ 0, n ≥ 0, 0 <

m+n ≤ L−2, 1 ≤ p ≤ 3} (Figure 3.10). Any one-step requadrangulation from the case

(m0, n0, p0) must be one of the following possible scenarios: (1) (m0+1, n0−1, p′0), (2)

(m0−1, n0+1, p′0), (3) (m0+1, n0+1, p′0), and (4) (m0−1, n0−1, p′0). Here p′0 can be p0,

p0−1, or p0+1, depending on the situation. The operations can correspond to distance-

preserving mutual spinning as well as distance-varying movement. Furthermore, when

R is not regular, the number of valid configurations is at most τ(L) where L is the

side length of the smallest regular hexagon that contains R.

Theorem 3.5.4 Given a convex region R that encloses a 3 − 5 pair connected by

separatrices of lengths d1 and d2, there are exactly K = MN mutually distinctive

requadrangulations of R that still contain a 3− 5 pair. Here M and N are constants

derived from the side lengths Ei’s of R and d1 and d2. The set of the requadrangu-

lations is parameterized by the following set: {(m,n) | 1 ≤ m ≤ M, 1 ≤ n ≤ N}

(Figure 3.11). Any one-step requadrangulation from the case (m0, n0) must be one of
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(a) (b)

Figure 3.12: An Open Path and a Loop.

An open path (left) and a loop (right). Blue triangles indicate normal convex turn
points and red triangles indicate concave turn points. (b) All possible cases of the
smallest convex region containing a vertex pair connected by separatrices with length
d1 and d2 in the counter-clockwise order. (left) and (middle) Two non-degenerate
cases. (right) Degenerate case where d2 is 0.

the following: (1) (m0 +1, n0), (2) (m0−1, n0), (3) (m0, n0 +1), and (4) (m0, n0−1).

Each of these moves corresponds to the irregular vertex pair moving toward one of the

four sides of R without mutual spinning or change in distance between the irregular

vertex pair.

To prove these theorems we need the following definitions adapted from Li et al.

(2010).

Definition 3.5.5 A path γ (Figure 3.12a) on the mesh M consists of a sequence

of edges ei = (vi, vi+1) for 0 ≤ i < N . N is the length of γ. A path is a loop

(Figure 3.12a right) if v0 = vN . Otherwise, γ is an open path (left). A loop γ is

degenerate if there exists a vertex in γ that is incident to at least three edges in γ.

A degenerate open path can be defined in a similar fashion. An open path γ

consisting of only regular vertices is regular. For a regular open path γ, the edges

in γ divide the 1-ring neighborhood of any interior vertex v on γ into two subsets of

quadrilaterals. v is a turn point if there are three quadrilaterals on one side and one

quadrilateral on the other side. Otherwise, it is a non-turn point. For non-regular

open paths turn points and non-turn points are undefined. For any vertex v on a
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loop γ, v is a non-turn point if there are two quadrilaterals in the exterior of the loop,

otherwise it is a turn point. A path γ is straight if every interior vertex in γ is regular

and non-turning.

A region R is a subset of the quadrilaterals in M whose dual graph is connected.

That is, for any two quadrilaterals s and t in R, there is a sequence of quadrilaterals

such that t0 = s, tN = t, and ti and ti+1 share an edge in R for all 0 ≤ i < N . The

boundary of R, denoted by ∂R, is a loop. R is degenerate if ∂R is a degenerate loop,

otherwise it is non-degenerate. In this chapter we assume a region is non-degenerate

and has exactly one boundary loop unless otherwise specified. A turn point on ∂R

is convex if it has more than two adjacent quadrilaterals in R̄, the exterior of R.

Otherwise the turn point is concave (Figure 3.12a). The angle of a turn v, denoted

by k(v), is (m(v) − 2)π
2

where m(v) is the number of incident quadrilaterals of v in

R̄. Because we only consider boundary vertices with a valence up to six, a convex

turn point can have a turning angle up to π (m(v) = 4). We refer to such points as

a sharp convex turn point. A sharp convex turn point is considered as two normal

convex turn points (m(v) = 3) connected by an edge of length zero. Finally, a region

R is convex if there are no concave turn points on ∂R. Otherwise, it is concave.

Definition 3.5.6 Two regions are compatible if their boundaries are indistinguish-

able from the exterior. That is, there exists a way to walk each boundary and produce

the same sequence of turning angles of the vertices. Remeshing a region is defined as

finding a different but compatible region.

A side of a region R is a sequence of edges of ∂R between two normal convex turn

points. Alternatively we can say two regions are compatible if there exists a way to

walk each boundary and produce the same sequence of length of sides.
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Definition 3.5.7 An open separatrix is an open and straight path whose interior

vertices are regular and at least one of the end vertices is irregular. A closed separatrix

is a loop that contains exactly one irregular vertex. In the remainder of the chapter

we are only interested in open separatrices. There are l(v0) separatrices emanating

from v0.

The discrete Gauss-Bonnet theorem relates the total turning angle
∑

v∈∂R k(v)

along the boundary ∂R to the total discrete Gauss curvature of the vertices of R as

follows:

∑
v∈∂R

(m(v)− 2) +
∑
v∈intR

(4− l(v)) = 4χ(M) (3.1)

where χ(M) is the Euler characteristic of M .

To prove Theorems 3.5.2, 3.5.3 and 3.5.4, first we need the following lemmas.

Lemma 3.5.8 Under the assumption of Theorems 3.5.2, 3.5.3 and 3.5.4, the smallest

region between v1 and v2, Rα, is unique and must be a rectangular grid of size d1× d2

in the counter-clockwise order. If d1 or d2 is zero we have the degenerate case of the

two irregular vertices connected by a single separatrix.

The proof of Lemma 3.5.8 is based on Li et al. (2010) and is omitted here. All

possible cases of the smallest convex region are shown in Figure 3.12b.

We note that the smallest enclosing convex region for an irregular vertex pair is

the 1-ring neighborhood of Rα.

Lemma 3.5.9 Given a convex region R that contains no irregular vertices and no

sharp convex turn points on its boundary ∂R, the number of sides (equal to the number

of normal convex turn points) in ∂R is given by 4 − G(R) where G(R) = is total

discrete Gaussian curvature of R.
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(a) (b) (c)

Figure 3.13: Examples of Convex Regions.

Examples of convex regions R enclosing exactly one (a) 3− 3, (b) 5− 5 and (c) 3− 5
pair v1 and v2 connected by separatrices of length d1 and d2. The smallest region
between the pair Rα is shown in blue. ∂R is shown in red. Blue triangles indicate
normal convex turn points. Separatrices of v1 and v2 that go outward from Rα are
shown in green. E1 to E6 denote the length of sides of R. e1 to e6 denote the number
of quad strips extended from Rα along the outward separatrices. The intersection
points between separatrices and the region boundary are marked with yellow stars.

Proof From Equation 3.1 we have
∑

v∈∂R(m(v) − 2) = 4χ(R) −
∑

v∈intR(4 − l(v)).

Since R has only convex turn points, for any normal convex turn point on ∂R we have

m(v) = 3 and non-turn point m(v) = 2. Consequently, the left side of this equation,

i.e.,
∑

v∈∂R(m(v)−2), is equal to the number of normal convex turn points in ∂R. On

the right side of this equation, χ(R) = 1 since R is simply-connected. Furthermore,

G(R) =
∑

v∈intR(4− l(v)) is the total discrete Gaussian curvature of R.

A consequence of this lemma states that the number of sides of a convex region R

contains a 3−3, 5−5, and 3−5 irregular vertex pair has 2, 6, and 4 sides, respectively

(see Figure 3.13 for examples).

Lemma 3.5.10 The atomic step to expand a convex region R while keeping R convex

without introducing irregular vertices is to add a strip of quadrilaterals adjacent to one

side of R.

Proof To expand a region at least one quadrilateral belonging to R̄ adjacent to

an edge in ∂R has to be added. Consequently, for the two ending vertices of the
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edge, denoted as va and vb, both gain an adjacent quadrilateral and m(va) and m(vb)

decrease by 1. Thus va and vb will become concave turn points if it is not a convex

turn point (m(va),m(vb) <= 2). To avoid creating concave turn points adding more

quadrilaterals adjacent to edges in ∂R right next the first edge is necessary until both

ending vertices are convex turn points.

Theorem 3.5.11 Given a convex region R enclosing a 3−3, 5−5, or 3−5 pair, the

configuration is uniquely determined by the following vector of couples (Sij, uij) where

i is the index of the irregular vertex, j is the index of a separatrix emanating from vi,

Sij is the side on ∂R that intersects with this separatrix, and uij is the graph distance

of this intersection point from the starting point of this side (counterclockwise). In

Figure 3.13 each of these locations is highlighted with a yellow star-shaped symbol.

The proof for Theorem 3.5.11 is similar to that of Theorem 3.5.1. Basically the

location of the intersection points on the boundary and the side lengths of the region

boundary are related to the distance of the irregular vertex pair to each edge of ∂R.

This relation can be characterized by a linear system that has a unique solution. Con-

sequently, should the solution have only positive entries (all distances are positive),

there is a unique configuration corresponding to this set of parameters.

The following lemmas show the underlying structure of R containing exactly a

3− 3, 5− 5 or 3− 5 pair:

Lemma 3.5.12 Under the assumption of Theorem 3.5.2, arbitrary convex regions R

can be constructed as follows: from the smallest convex region between the 3− 3 pair

Rα, there are e1 strips of quadrilaterals extending from one v3 vertex parallel to its

outward separatrix and e2 strips of quadrilaterals extending from another v3 vertex

parallel to its outward separatrix. An example is shown in Figure 3.13a.
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Lemma 3.5.13 Under the assumption of Theorem 3.5.3, arbitrary convex regions R

can be constructed as follows: from the smallest convex region between the 5− 5 pair

Rα, there are e1, e2 and e3 strips of quadrilaterals extended from one v5 vertex parallel

to its three outward separatrices, and e4, e5 and e6 strips of quadrilaterals extended

from another v5 vertex parallel to its three outward separatrices. An example is shown

in Figure 3.13b.

Lemma 3.5.14 Under the assumption of Theorem 3.5.4, arbitrary convex regions R

can be constructed as follows: from the smallest convex region between the 3− 5 pair

Rα, there are e1, e2 and e3 strips of quadrilaterals extended from the v5 vertex parallel

to its three outward separatrices, and e4 strips of quadrilaterals extended from the v3

vertex parallel to its outward separatrix. An example is shown in Figure 3.13c.

Proof For Rα, which is unique according to Lemma 3.5.8, Lemma 3.5.12 holds with

e1 and e2 equals 0, Lemma 3.5.13 holds with e1 to e6 equals 0, and Lemma 3.5.14

holds with e1 to e4 equals 0. Consider Rα as the unique first step in constructing

R. By Lemma 3.5.9 we know that R has exactly 2, 6, and 4 sides when containing

exactly a 3−3, 5−5, and 3−5 pair. By Lemma 3.5.10 we know that the atomic step

to expand a convex region is to add one strip of quadrilaterals adjacent to one side.

It can be easily verified that each side is perpendicular to one outward separatrix

of one v3 or v5 vertex. Since the strip of quadrilaterals added is parallel to one

side, it is also perpendicular to one outward separatrix of one v3 or v5 vertex, thus

Lemmas 3.5.12, 3.5.13 and 3.5.14 hold after the expansion.

Since these lemmas hold for the unique first step of constructing R and hold after

all possible atomic steps to expand R, by mathematical induction we know that they

hold for arbitrary convex regions R, which must be constructed from the unique Rα

by several atomic expansion steps.
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We now prove Theorem 3.5.2.

Proof By Lemma 3.5.12 we denote the two sides of R adjacent to the e1 and e2 strips

of quadrilateral as E1 and E2, as shown in Figure 3.13a. It can be easily verified that

the following equations hold: E1 = d1 + d2 + 2e2 and E2 = d1 + d2 + 2e1.

Consequently, e1 and e2 are uniquely determined given E1, E2, d1, and d2. We

now seek to enumerate (and parameterize) all possible such requadrangulations when

E1 = E2.

After remeshing we denote the changes of each variable as ∆d1, ∆d2, ∆e1 and ∆e2.

Since E1 = E2 are constant we have the following set of equations: ∆d1+∆d2+2∆e2 =

0 and ∆d1 + ∆d2 + 2∆e1 = 0.

From these equations we know that ∆d1 + ∆d2 must be even otherwise ∆e2 and

∆e1 will not be an integer. In other words ∆d1 and ∆d2 have to be either both even or

both odd. Furthermore, if ∆d1 = ∆d2 = 0 then ∆e2 = 0 and ∆e1 = 0. All variables

do not change thus R remains identical.

In the case of a regular digon containing a 3 − 3 pair that is not connected by

a single separatrix, each edge of the digon will intersect one separatrix from one

vertex, say v1, and two separatrices from the other, say v2. Suppose that the first

edge in the digon intersects separatrix 1 of v1 and separatrices 0 and 2 of v2, i.e.,

S11 = S20 = S22 = 1. Recall that u11, u20, and u22 denotes the location of the

intersection points. Consequently, we have u20 < u11 < u22. Notice that d1 = u22−u11

and d2 = u11−u20. When the irregular vertex pair is connected by a separatrix, each

edge in the digon will only intersect one separatrix from each vertex. In this case,

d1 = u22 − u11 and d2 = 0.

When d1 + d2 = E1, the irregular vertex pair must appear on the boundary of R.

Since we discuss only convex regions free of irregular vertices on its boundary, this

is not allowed. Furthermore, once d1 and d2 are given, the set of intersection points
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between any separatrix from v1 or v2 with any edge will be determined. According

to Theorem 3.5.11, there is at most one valid configuration (requadrangulation) that

satisfies the requirements on positions of intersection points. Consequently, all pos-

sible requadrangulations of R with a 3− 3 pair can be parameterized by m and n as

follows: {(m,n) | m ≥ 0, n ≥ 0, 0 < m + n < E1 − 2}. Here m = d1 and n = d2.

For degenerate cases, i.e., d2 = 0, both (d1, 0) and (0, d1) are allowed. This gives rise

to a pyramid-shaped grid such as the one shown in Figure 3.9. When E1 is even,

there are N(N − 1) mutually distinguishable configurations. When E1 is odd, there

are N2 mutually distinguishable configurations. Here N = bL
2
c and L = E1 = E2.

Every grid point corresponds to a valid requadrangulation, and (0, 0) corresponds to

the case in which the irregular vertex pair is merged into a single v2 vertex.

Given a configuration, it is possible to move the irregular vertex pair in at most

four directions, corresponding to the four neighboring grid points. Each of these four

atomic changes can be realized using a pair-wise movement operation. Given this, we

now have an explicit algorithm of realizing any valid configuration inside a regular

digon. For configurations where m+n is even, we start with the unique configuration

corresponding to the (0, 0) case. For configurations where m+n is odd, we start with

the unique configuration corresponding to the (0, 1) case. The uniqueness is a result

of Theorem 3.5.1. Next, we find a shortest path in the grid between the starting case

and the target configuration and perform necessary steps to move from the former

towards the latter through appropriate graph-level operations. This demonstrates

that each valid configuration inside a regular digon can be realized, i.e. there is one

and only one remeshing corresponding to every grid point.

The proof for Theorem 3.5.3 is similar, except that the relationships governing

these variables are given by:
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E1 = d1 + e2 + e6

E2 = e1 + e3

E3 = d2 + e2 + e4

E4 = d1 + e3 + e5

E5 = e4 + e6

E6 = d2 + e1 + e5 (3.2)

When R is a regular hexagon containing a 5− 5 pair, i.e., E1 = E2 = E3 = E4 =

E5 = E6, there is again a two-fold rotational symmetry which maps two different

configurations to the same remeshing. These two cases corresponding to the positions

of the irregular vertex pair are swapped. In the remainder of the discussion we will

treat the two configurations as one, which is equivalent to modulating out the two-

fold symmetry. When the irregular vertices are not connected by a single separatrix,

it is straightforward to verify that there are exactly four edges in R that intersect two

separatrices, one from v1 and v2 each. Due to the two-fold symmetry in the hexagon.

These four edges form two pairs of opposing edges. Consequently, it is sufficient to

consider only two consecutive edges from the four.

After the initial modulation, there is still a three-fold rotational symmetry, which

corresponds to three pairs of consecutive sides. For example, in Figure 3.13b the

sides with length E3 and E4 are one such pair. Every valid configuration for one pair

can be used to generate a solution for the other two pairs through an appropriate

rotation, and vice versa. Consequently, it is sufficient to consider only the case where

the pair of sides each intersect with one separatrix from v1 and v2. Notice that the

distance between the two intersection points on the first side is equal to d1, and the

distance between the intersection points on the second side is d2.
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For the special case when there is a connecting separatrix between v1 and v2,

we consider that d2=0. Consequently, the set of solutions can be parameterized by

the same set of m and n as for the 3 − 3 pair. However, due to the aforementioned

three-fold symmetry, we add the third index p which ranges from 1 to 3 to distinguish

them. This leads to three squares being glued together to form the surface of a half

cube (Figure 3.10). Like the 3−3 case, in a regular hexagon there is one and only one

valid configuration corresponding to each point in the grid. Any valid configuration

can be explicitly realized.

We now prove Theorem 3.5.4.

Proof By Lemma 3.5.14 we denote the four sides of R adjacent to the e1 and e4 strips

of quadrilateral as E1 and E4, as shown in Figure 3.13c. It can be easily verified that

the following equations hold:

E1 = d1 + e2 + e4

E2 = e1 + e3

E3 = d2 + e2 + e4

E4 = d1 + d2 + e1 + e3 (3.3)

After remeshing we have ∆Ei = 0 for 1 ≤ i ≤ 4. This implies that ∆d1 =

∆d2 = 0, i.e., any remeshing of R cannot change the relative position of the two

irregular vertices. However, these configurations can differ in terms of e1 and e2.

Given the values of E1, E2, e1, and e2 such that 1 ≤ e1 < E2 and 1 ≤ e2 < E1 − d1,

there exists a unique legal requadrangulation of R. Consequently, the set of possible

requadrangulations can be parameterized by e1 and e2, and the range of m = e1 and

n = e2 are given by [1, E2 − 1] and [1, E1 − d1 − 1], respectively. This is illustrated
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in Figure 3.11. Any atomic requadrangulation will translate Rα towards one of the

sides of ∂R, corresponding to the four neighboring grid points.

3.6 Complementary Operations

Irregular Vertex Cancellation: We can move a v3 vertex to collide with a v5

vertex, or vice versa, by applying multiple pair-wise movement operations. When

one v3 and one v5 vertex collide they cancel each other and both become regular.

At least one other irregular vertex needs to be involved in this cancellation. In this

fashion we develop a 3− 5 pair cancellation operation. It is possible that the last

step of a 3− 5 pair cancellation is equivalent to one 3− 3− 5− 5 removal operation

and two pairs of irregular vertices are canceled at once. Examples can be found in

Figures 3.15 and 3.16.

Irregular Vertex Merging: A 3−3 pair can be merged to a v2 vertex and a 5−5

pair can be merged to a v6 vertex when their graph distance is even. Theorems 3.5.2

and 3.5.3 provide the theoretical analysis that is related to such a merge.

Irregular Vertex Alignment: Under the assumptions of Theorems 3.5.2 and 3.5.3,

arbitrary 3− 3 and 5− 5 pairs can be aligned by applying multiple movement oper-

ations until d1 = 0 or d2 = 0.

Smoothing: We use iterative Laplacian mesh smoothing to improve the geometry

if the connectivity edits degrade the shape of the mesh above a user-defined tolerance.

The user can select uniform weights or cord-length weights, and elect to preserve sharp

features by constraining the positions of vertices on sharp edges. The smoothing

scheme can improve the aspect ratios of modified faces. After each iteration all

vertices are projected back onto the original mesh. We have also experimented with

a scheme in which newly generated vertices are pulled towards vertices in the original

mesh if the distance between the new and original vertices is above a threshold. The
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projection and pulling scheme can narrow the difference to the original mesh.

3.7 Comparisons to Triangle Mesh Editing

We show the analogy between the editing operations for triangular meshes pro-

posed in Li et al. (2010) and our operations for quadrilateral meshes. First, it is

impossible to generate, move, or delete a single irregular vertex within a convex re-

gion for both triangular and quadrilateral cases. Thus the simplest possible operations

that do not increase the number of irregular vertices must involve an irregular vertex

pair. For the triangular case they are 5− 7, 5− 5, and 7− 7 pair movements, and for

the quadrilateral case they are 3− 5. 3− 3, and 5− 5 pair movements.

The 5 − 7 pair (triangular case) and 3 − 5 pair (quadrilateral case) movements

both will not change the relative distance between the pair, measured in the length

of their connecting separatrices.

Similarly, the 5−5 / 7−7 pair (triangular case) and 3−3 / 5−5 pair (quadrilateral

case) movements both will change the relative distance under specific constraints. In

general in both cases the pair will move in a symmetric, rotating fashion.

We note that despite the similarity in the suites of editing operations for both

triangular and quadrilateral meshes, i.e., both comprise a hierarchy of basic, atomic

semantic, and composite operations, our chapter is the first to be able to enumerate all

possible configurations given a regular convex region. Such analysis was not present

in Li et al. (2010). Consequently, while they demonstrated that it is possible to move

a 5 − 5, 7 − 7, or 5 − 7 pair in practice, no guarantee was provided, neither was an

explicit algorithm given to transform from one valid configuration to a different valid

configuration within the regular convex region.
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Figure 3.14: Converting a Disc Shaped Mesh with Higher Order (36) Irregular Vertices
to a Semi-regular Mesh.

The faces and edges of the mesh define the panels of the designed structure.

(1) (2)

Figure 3.15: Using Our Editing Framework to Improve a Remeshed Rockarm Model.

(left) Original mesh with an ill-shaped corner part. The diagonal 3−5 pair leads to a
highly non-planar face in between and distorts the nearby faces on the upper-left side.
(1) The misplaced v3 vertex is made regular by a quad collapse. (2) The generated
3−5 pair is moved upper-left to cancel with the v5 vertex by a 3−5 pair cancellation.
Movement of vertices on sharp features are constrained. (right) Mesh improved by
our editing framework. Now the corner part has a nice structure.

3.8 Applications

Irregular Vertex Cancellation and Alignment: In Figure 3.19 we improve a

highly irregular structure designed by an architect that consists of quadrilateral glass

panels. We reduce the numbers of irregular vertices from 168 (92 v3, 62 v5, and 14

v6) to 24 (12 v3 and 12 v5) by multiple 3− 5 pair cancellation operations. Then we

align the irregular vertices to improve the flow of the panel structure. The editing
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(1) (2)

Figure 3.16: Using Our Editing Framework to Improve a Remeshed Fandisk Model.

(left) Original mesh with an ill-shaped upper part caused by a mis-aligned 3−3 pair.
(1) The misplaced v3 vertex is moved to proper location by an edge flip. (2) The
created 3 − 5 pair is moved downward to cancel with the v5 vertex by a 3 − 5 pair
cancellation. (right) Mesh improved by our editing framework. Now the upper part
has a nice structure and the face strips flow consistently through the front surface.

(1) (2)

Figure 3.17: Using Our Editing Framework to Fix a Defect on a Remeshed Accessory
Model.

(left) Original mesh with a v3 irregular vertex positioned on the feature edge. The
v3 vertex’s deficiency of valence leads to a degenerated, triangular shaped quad face
on its lower side. (1) to (2) The v3 vertex is pulled off the feature edge by a 3 − 5
pair movement. The shape of nearby faces are improved because of the better mesh
topology.
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(a) (b) (c) (d)

Figure 3.18: Progressive Irregular Vertex Cancellation.

(a) Bunny model produced by a mesh simplification algorithm, in which 956 of the
total 3006 vertices are irregular. (b) and (c) Intermediate results with 400 and 48
irregular vertices. (d) Maximally reduced form with only eight v3 irregular vertices.
The smaller figures show the same models with a checkerboard pattern by greedy
coloring (so that adjecent quad faces have different colors).

Figure 3.19: Irregular Vertex Redunctions.

We introduce connectivity editing operations to control irregular vertices in quadri-
lateral meshes. This can lead to improved results in the design of a glass structure:
(a) top: the original mesh with irregular vertices as colored dots, (a) bottom: a stripe
pattern applied to the mesh, (b) a rendering of the design as glass construction. In
(c) and (d) we show the edited mesh. The glass panels on the roof are generated from
the edges in the meshes.
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process takes approximately 12 minutes (7 minutes for irregular vertices cancellation

and 5 minutes for alignment).

In Figure 3.14 we transform a mesh with higher order irregular vertices (36 v3,

2 v36) to a semi-regular (4 aligned v3 vertices) mesh by several valence reduction

operations and several irregular vertex alignment operations.

Connectivity Improvement: Figure 3.15, 3.16, and 3.17 show our editing

framework is capable of repairing various kinds of defects found in results of state-

of-art quadrangulation approaches. Even though these existing quad remeshing al-

gorithms produce excellent results, they are essentially heuristics to tackle an NP-

complete problem resulting from the fact that the selection and positioning of irregular

vertices is a discrete optimization problem. Therefore, we believe that it is unlikely

that a general solution can be found. In our analysis a user can identify several mean-

ingful edits that can improve a mesh for many automatically generated results. We

therefore argue that manual editing tools are an essential component of a complete

mesh processing pipeline.
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Chapter 4

CONNECTIVITY EDITING FOR QUAD-DOMINANT MESHES

We propose an editing framework for the connectivity of arbitrary two-manifold

quad-dominant (QD) meshes with the ability to explicitly control the location, type,

and number of the irregular vertices (with more or fewer than four neighbors) and

faces (non-quads) in the mesh. In the primal domain, the large number of combina-

tions of different irregular elements makes connectivity analysis difficult. Therefore,

we propose to edit QD meshes in an alternative pure quad mesh domain building on

existing work in quad mesh connectivity editing Tarini et al. (2010); Bommes et al.

(2011); Peng and Wonka (2013). We are able to answer the following fundamental

questions about the connectivity of QD meshes: what is the discrete Gauss-Bonnet

theorem for QD meshes? In particular, can irregular vertices and faces be counted in

the same way? What editing operations are fundamentally possible and impossible

for QD meshes? Can we create, delete, or move a single irregular element? How can

we interchange irregular faces and vertices? What can we do with T-junctions? In

what circumstances is being quad-dominant, i.e. having non-quad faces, preferable

to being pure quad for remeshing a surface? We then identify the simplest possible

editing operations for QD meshes in the sense that they affect the smallest possible

regions and involve the fewest irregular elements, which are moving irregular elements

in pairs.

To evidence that the ability to edit irregular elements in a QD mesh is valuable, we

compare different ways to QD remesh a given surface, e.g. having only irregular ver-

tices, only irregular faces, or both, in terms of geometric properties. We demonstrate

that the users can use our editing framework to alter the connectivity of existing QD
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meshes with ease.

4.1 Chapter Overview

We organize this chapter as follows. In Section 4.2.1, we review the
√
CC domain

of QD meshes and argue why it is a suitable platform for analyzing the connectivity

of QD meshes. In Section 4.2.2, we formulate the generalized version of the discrete

Gauss-Bonnet theorem for QD meshes, which can be used to predict the number

of irregular elements in an arbitrary QD mesh given the boundaries and the Euler

characteristic. In Section 4.2.3, we analyze what kinds of editing operations are

impossible and possible for QD meshes. Backed by the aforementioned theoretical

analysis, in Section 4.3, we propose a connectivity editing framework for QD meshes.

In Section 4.4, we compare various ways of QD mesh design for a given surface in

terms of geometric properties, and show examples of QD mesh connectivity edits.

4.1.1 Basic Definitions

We limit our discussion to two-manifold QD meshes. The valence of a vertex

v, which we denote as l(v), is the number of edges in the mesh incident to v. A

vertex with valence n is denoted as vn, e.g. a v3 and a v5. A vertex with valence

4 is considered as regular, otherwise it is irregular. The degree of a face f , which

we denote as d(f), is f ’s number of vertices. A face with degree d is denoted as fd,

e.g. a triangle (f3), a quad (f4), and a pentagon (f5). A face with degree four is

considered as regular, otherwise it is irregular. We introduce an index function to

measure irregularity. We define the index as 4− n for a vn and 4− d for an fd.

To simplify our discussion, we consider irregular vertices with valences lower than

3 or higher than 5 as multiple v3 or v5 collocated together and therefore count them

as multiple irregular vertices. Similarly, irregular faces with degree lower than 3 or
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higher than 5 are considered as multiple f3 or f5 collocated together and counted as

multiple irregular faces. We also use the following definitions:

Definition 4.1.1 A path γ on a QD mesh M consists of a sequence of edges ei =

(vi, vi+1) for 0 ≤ i < N , where N is the length of γ. A path is a loop if v0 = vN .

We assume that γ is non-degenerate, i.e. there is no vertex in γ that is incident to

at least three edges in γ.

Definition 4.1.2 A region R on a QD mesh M is a connected subset of the faces in

M (Figure 4.1b). We assume that R has a single boundary unless otherwise specified.

The boundary of R, denoted by ∂R, is a loop. The index of a boundary vertex v is

1− e(v) where e(v) denotes the internal valence of v, i.e. the number of v’s adjacent

edges connecting to internal vertices. Intuitively, we denote a boundary vertex as a

non-corner if its index is zero, a convex corner if its index is 1, and a concave corner

if its index is negative. A region is convex if it has no concave corners, otherwise it

is concave. A side of a region R is a sequence of edges of ∂R between two corners.

In our context, a region’s boundary configuration is often specified as a sequence

of vertices together with their internal valences. Note that the indices of irregular

vertices, irregular faces, and boundary vertices are related to the Gaussian curva-

ture (for irregular elements) and geodesic curvature (for boundary vertices) of their

suitably remeshed neighborhoods.

4.2 Theoretical Analysis

We describe the major insights for connectivity editing of QD meshes in the

following.
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(a) (b)

Figure 4.1: Different Domains of a QD Mesh.

(a) A QD mesh with a single boundary loop in its (1) primal domain, (2)
√
CC

domain, (3) dual domain, and (4) CC domain. v3 and f3 are drawn in blue. v5
and f5 are drawn in yellow. Note that the mapping from (1) to (2) and from (2)

to (4) can be done by a
√
CC subdivision, the mapping from (2) to (1) can be done

by an inverse
√
CC subdivision, and the mapping from (2) to (3) can be done by

an alternative inverse
√
CC subdivision with the p-vertices and d-vertices switched

(dangling vertices are omitted). Note that the T-junction in the bottom left corner is

mapped to an adjacent v3-v5 pair in the
√
CC domain. (b) A region in a QD mesh.

Convex corners are shown in blue and concave corners are shown in red. We denote
the indices of the boundary vertices and irregular elements. Note that the discrete
Gauss-Bonnet theorem (Equation 4.1) is satisfied.

4.2.1
√
CC Domain

Analyzing connectivity editing for QD meshes in their primal domain would be too

complicated because all possible combinations of irregular faces and vertices need to

be considered. For example, the triple combinations of v3, v5, f3, and f5 amount to

20 possibilities, as compared to 4 in a quad mesh with just v3 and v5. An alternative

domain where both irregular vertices and faces are mapped to elements of the same

type is thus desired.

A key insight of our work is the selection of a suitable domain for QD mesh

connectivity editing. We prefer domains where meshes are pure quad so that existing

quad mesh editing work can be directly applied. Therefore, the dual, Doo-Sabin Doo

and Sabin (1978), and
√

3-subdivision Kobbelt (2000) are infeasible. One reasonable

choice may be the CC domain in which subdivided meshes are pure quad and both

irregular vertices and faces in the primal domain are mapped to irregular vertices of
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the same degree. However, only a subset of quad meshes is inversely CC subdivisible,

e.g. irregular vertices must have graph distances of at least two, which means that it

is possible to edit a CC subdivided mesh to make it no longer inversely subdivisible.

This fact again makes analysis difficult. It turns out that the
√
CC domain of a QD

mesh Kobbelt (1996) is a suitable platform for our analysis. We review key properties

of the
√
CC domain as follows.

A
√
CC subdivision can be understood as a half step of achieving the connectivity

of a full CC subdivision (Figure 4.1a). Every primal vertex and face is mapped to a
√
CC vertex. The former is denoted as a p-vertex and the latter is denoted as a d-

vertex (corresponding to dual vertices of the primal mesh). We position the p-vertices

at the same locations of their corresponding primal vertices and the d-vertices at the

centers of the corresponding primal faces for visualization purposes. Every p-vertex

is connected to the d-vertices of its corresponding primal vertex’s adjacent faces and

every d-vertex is connected to the p-vertices of its corresponding primal face’s adjacent

vertices. For meshes with boundaries we add an imaginary adjacent boundary face

to each primal boundary edge. In this manner every primal edge, non-boundary or

boundary, would have two adjacent faces and would be mapped to a
√
CC face. Any

√
CC domain mesh is thus pure quad since every

√
CC face has four adjacent vertices

(two p-vertices and two d-vertices). Furthermore, the
√
CC vertices have the same

degree as their corresponding primal vertices or faces. It is straightforward to see

that every QD mesh has exactly one corresponding
√
CC mesh. Another advantage

of a
√
CC subdivision is that it increases the number of faces by a factor of about two

(converting every primal edge to a
√
CC face), as compared with a factor of about

four by a CC subdivision.

Inverse
√
CC Subdivision: As noted by Taubin Taubin (2002), an inverse

√
CC

subdivision to recover the primal mesh can be done by inserting a diagonal connecting
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the two p-vertices for each
√
CC face (and recover the dual by inserting diagonals

connecting two d-vertices) for quad meshes that are 2-colored (as p-vertices and d-

vertices). Note that for a mesh with boundaries it is possible that the recovered dual

mesh has valence 1, i.e. dangling, vertices corresponding to the valence-2 boundary
√
CC vertices. The following proposition describes the feasibility of inverse

√
CC

subdivision of quad meshes:

Proposition 4.2.1 A region in a quad mesh with a sphere-like or disk-like topology

(with at most one boundary and no handles) can be inversely
√
CC subdivided in

exactly two ways.

Proof It is known Harary (1969) that a graph can be 2-colored, i.e. is bipartite,

if and only if it has no odd graph cycles. Any graph cycle in such a region is the

boundary of a quadrangulation with a disk-like topology thus has an even length (a

property of pure quad meshes). It is straightforward to see that the 2-coloring for a

2-colorable graph is unique (up to switching of all colors). By considering the vertices

with the first color as either p-vertices or d-vertices we have two ways to do inverse
√
CC subdivision.

Conversely, a region with more than one boundary or with handles may be in-

versely
√
CC subdivisible or not. Proposition 4.2.1 implies that we can freely edit

a
√
CC mesh and the edited mesh is still inversely

√
CC subdivisible as long as the

changes are contained in a disk-like region. Furthermore, the retrieved primal domain

meshes are consistent if we fix the coloring of a fixed vertex in the
√
CC domain by

the following proposition:

Proposition 4.2.2 An inverse
√
CC subdivision applied to a quad mesh region with

at most one boundary converts two
√
CC vertices to be of the same type (primal vertex

or face) if and only if their graph distance is even.
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The proof is straightforward by inspecting the 2-coloring of a shortest path be-

tween the two
√
CC vertices and is omitted here.

4.2.2 Discrete Gauss-Bonnet Theorem for Quad-Dominant Meshes

We formulate the discrete Gauss-Bonnet theorem for an arbitrary QD mesh M

as follows:

∑
v∈∂M

(1− e(v)) +
∑

v∈intM

(4− l(v)) +
∑
f∈M

(4− d(f)) = 4χ(M), (4.1)

where χ(r) denotes the Euler characteristic of M . Recall that l(v) denotes vertex v’s

valence, e(v) denotes the number of v’s adjacent edges connecting to internal vertices,

and d(f) denotes face f ’s number of vertices.

Equation 4.1 implies that for an arbitrary QD mesh (including a region) the sum

of the indices of the boundary vertices plus the sum of the indices of the irregular

vertices and faces equals a constant solely determined by its Euler characteristic. It

is useful for determining the minimal number of irregular elements in a QD mesh

with known boundaries and Euler characteristic and vice versa. For example, any

connectivity edits would not change the sum of the indices of the irregular elements

within a QD region with a fixed boundary.

Equation 4.1 can be proved in many ways, e.g. by analyzing the CC domain of M

or summing the angle defects of the irregular elements and boundary vertices. Here

we provide a proof that demonstrates that Equation 4.1 is a pure combinatorial fact

directly derived from the Euler characteristic.

Proof The Euler characteristic of M states that V − E + F = χ(M), where V ,

E, and F respectively denote the number of vertices, edges, and faces in M . V

equals Vb + Vi where Vb denotes the number of boundary vertices and Vi denotes
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the number of internal vertices. E equals Ebb + Ebi + Eii where Ebb denotes the

number of boundary edges that are incident to two boundary vertices, Ebi denotes

the number of boundary-internal edges that are incident to one boundary vertex and

one internal vertex, and Eii denotes the number of internal edges that are incident

to two internal vertices. The Euler characteristic of M can then be rewritten as

4Vb + 4Vi − 4Ebb − 4Ebi − 4Eii + 4F = 4χM , which can be reformulated as:

(Vb − Ebi)+

(3Vb − 3Ebb)+

(4Vi − 2Eii − Ebi)+

(4F − 2Eii − 2Ebi − Ebb) = 4χM.

The first part (Vb − Ebi) equals
∑

v∈∂R(1 − e(v)). The second part (3Vb − 3Ebb)

equals zero since the number of boundary vertices and the number of boundary edges

are the same. The third part (4Vi − 2Eii − Ebi) equals
∑

v∈intM(4 − l(v)) since, by

summing the valences of all internal vertices, we count each internal edge twice and

each boundary-internal edge once. The fourth part (4F − 2Eii − 2Ebi − Ebb) equals∑
f∈M(4 − d(f)) since by summing the degrees of all faces, we count each internal

and boundary-internal edge twice and each boundary edge once.

4.2.3 Fundamental Editing Operations

In this section, we describe what editing operations are fundamentally impossible

and possible for irregular elements in a QD mesh. In general, our findings stem

from analyzing the
√
CC domain of QD meshes to which theorems about quad mesh

editing can be applied.
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Figure 4.2: The Five Basic Editing Operations for QD Meshes and Their Correspond-
ing Operations in the

√
CC Domain.

Both a vertex split and an edge insertion add a primal edge. They are equivalent
to an edge split of a

√
CC edge pair with a p-vertex (blue) and a d-vertex (red) in

between, respectively. Both an edge collapse and an edge deletion delete a primal
edge. They are equivalent to a quad collapse of a d-vertices pair and a p-vertices pair,
respectively. An edge shift shifts a primal edge toward one of its adjacent faces. It is
equivalent to an edge flip in the

√
CC domain. The edited meshes are not smoothed.

To begin with, we note that by Proposition 4.2.2, moving a single irregular element

without type-changing implies that the corresponding
√
CC irregular vertex’s graph

distance to another vertex with fixed labeling is changed by an even number, while

type-changing an irregular element implies that the graph distance is changed by an

odd number.

Proposition 4.2.3 It is impossible to create, delete, move, or type-change a single

irregular element in an otherwise regular QD region R.

Proof Being able to do so implies that we can produce another QD region R′ with the

same boundary but with a single created, deleted, moved, or type-changed irregular

element. R and R′’s
√
CC domains are two quad meshes with the same boundary but

with a created, deleted, or moved single irregular vertex. This contradicts Theorem

7.1 of Peng et al. (2011) (with an imaginary convex quad mesh region extended from

R′’s
√
CC domain mesh).
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(a) (b)

Figure 4.3: All Possible Moving Directions of a v3-v5 Pair.

(a) A v3-v5 pair can be moved in the left (green arrows), right (red arrows), up
(blue arrows), and down (purple arrows) direction. (b) A v3-f3 pair can be moved
closer (green arrows), farther apart (red arrows), rotating clockwise (blue arrows),
and rotating counter-clockwise (purple arrows). Note that a single step would switch
their types, thus a type-preserving movement can be realized by two consecutive
steps. The gray faces are marked for ease of inspection.

Because editing a single irregular element is impossible, we are interested in editing

irregular elements in pairs.

Proposition 4.2.4 Two irregular elements can be moved together in an otherwise

regular QD region. Irregular elements of the opposite indices, e.g. an f3-v5 pair,

translate in the same direction. Irregular elements of the same index, e.g. an f5-f5

pair, rotate and scale around a fixed point in the middle between the two irregular ele-

ments. Furthermore, the irregular elements change types at each step. See Figure 4.3a

and 4.3b for illustrations.

Proof A sketch of the proof is as follows. Two irregular elements can move in the

same way as two irregular vertices in the corresponding
√
CC mesh as described in

Theorem 7.2, 7.3, and 7.4 of Peng et al. (2011). Regarding the type-changing behavior,

a single movement in the
√
CC mesh would change both the irregular vertices’ graph

distances to another vertex with a fixed labeling by one, thus changing the types of

their corresponding primal elements.
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Proposition 4.2.5 An irregular element pair can be merged into a single irregular

element with a higher absolute index, e.g. two v3 can be merged into a single v2 and

two f5 can be merged into a single v6, if and only if they have the same type and

same index.

Proof An irregular element pair of the opposite indices translates in the same direc-

tion thus cannot be merged. For a pair with the same index and different types, e.g.

a v3-f3 pair, the graph distance between their corresponding
√
CC irregular vertices

is odd by Proposition 4.2.2, thus cannot be merged into a single irregular vertex by

Theorem 7.2 and 7.3 of Peng et al. (2011). Otherwise it can be merged.

4.2.4 T-Junction Editing

T-junctions, i.e. adjacent v3-f5 pairs, are often of special interest in QD remesh-

ing. We describe how a single T-junction can be moved and how a pair of T-junctions

can be canceled as follows.

Proposition 4.2.6 A T-junction can be moved in exactly four directions denoted as

up, down, left, and right.

Proof A T-junction can be moved exactly in the same way as the corresponding

adjacent v3-v5 pair (the v3 is a p-vertex and the v5 is a d-vertex) in the
√
CC

domain. The left and right directions are both realized by applying an edge split

followed by a quad collapse. The up direction is realized by two consecutive quad

collapses. The down direction is realized by two consecutive edge splits. There are

no other combinations. Note that applying a single step would switch the T-junction

to be an f3-v5 pair. See Figure 4.4 for an illustration.

Proposition 4.2.7 A pair of T-junctions in an otherwise regular convex region R

can be completely canceled if and only if R is a parallelogram, i.e. a 4-sided region
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with both pairs of opposite sides of the same graph length. Otherwise it can be reduced

to be a single irregular element pair of opposite indices and of the same type, e.g. a

v3-v5 or an f3-f5 pair.

Proof We first note that R must have 4 sides since it is convex and has a sum of

indices of irregular elements of 0. If R is a parallelogram, it is straightforward to

see that it can be remeshed as a regular grid, thus canceling the pair of T-junctions.

Otherwise we perform a triple cancellation of irregular vertices in the
√
CC domain

to cancel one v3-v5 pair against the v3 or v5 of the second pair. In either case the

result is a single v3-v5 pair, of which the graph distance is two, thus having the same

type.

Based on Proposition 4.2.7, we can identify four possible configurations (in terms

of relative orientations) of a T-junction pair. These configurations including their

cancellations are shown in Figure 4.5.

4.3 Editing Framework

To make the user interface intuitive, we design our editing framework such that

edits can be done directly in the primal domain. However (as stated in Section 4.2.1),

implementing editing operations in a QD mesh directly would be very complicated

since the operations need to handle the large number of combinations of both kinds

of irregular elements. Our proposed solution is as follows. First, user inputs in

the primal domain are mapped to the
√
CC domain. Actual edits are then carried

out in the
√
CC domain by building on existing work in quad mesh connectivity

editing. Finally, the edited QD mesh is obtained by an inverse
√
CC subdivision.

In our prototype we also allow editing in the
√
CC domain to enable easier analysis

of the underlying concepts. The user can edit using the operations described in the
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following.

Basic Operations: For analysis purposes and full flexibility, we identify five basic

operations for QD meshes that operate on a per-edge level (Figure 4.2): a vertex split

and an edge insertion both add a single edge, an edge collapse and an edge deletion

both delete a single edge, and an edge shift shifts an edge toward one of its adjacent

faces. They all can be realized by applying three basic operations for quad meshes

(edge split, quad collapse, and edge flip) in the
√
CC domain, thus eliminating the

need for implementing each of them explicitly. Edge splits and quad collapses can

each map to two different operations in the primal domain. The difference arises

because the vertices in the
√
CC domain have two different labels (p-vertices or d-

vertices), resulting in two different outcomes of inverse
√
CC subdivisions. We point

out that an edge collapse and an edge shift is respectively equivalent to a collapse and

a shift step of the GP operators proposed by Bommes et al. Bommes et al. (2011).

Pair-wise Movement: The user can move two irregular elements of arbitrary in-

dices and types, e.g. a v3-v3, a v3-f5, and an f5-f5, in four possible directions.

Each of the four possible movement directions is visualized by a pair of arrows with

the same color in both the primal and
√
CC domains (Figure 4.6). The user can

select one moving direction for one irregular element and the movement of the other

irregular element is constrained.

With this pair-wise movement operation, it is possible to do triple cancellations

(e.g. an f3-f5-v5 to a single v5) by selecting a pair of irregular elements and colliding

one element with a third element of an opposite index. Four irregular elements can

be canceled at once when both elements of an irregular element pair collide with

other elements of the opposite indices simultaneously. Cancellation can be done
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automatically, by computing the best movement path using a shortest path algorithm.

The shortest path algorithm should include topological as well as geometric cost terms

(e.g. curvature) and is therefore only a heuristic. Therefore, the manual selection of

the movement path needs to remain as an important option.

Type-Change: As mentioned in Section 4.2.3, an odd number of pair-wise move-

ments in the
√
CC domain would not only move but also change the types of both

irregular elements, e.g. a v3-f5 to an f3-v5 and a v3-v3 to an f3-f3. This is useful

for users to change the types of irregular elements without introducing additional

ones.

Single Conversion: The user can also change the type of a single irregular element

at the cost of introducing an adjacent irregular element pair of opposite indices, e.g.

an f5 to a v5 plus an f3-v5 pair or an f3 to a v3 plus an v3-f5 pair (Figure 4.7).

Alternatively, it can be viewed as changing the sign of a single irregular element’s

index and introducing an adjacent irregular element pair of the same index. It is

realized by applying a v3/v5 movement and v3-v5 pair generation operation in the
√
CC domain.

T-junction Movement and Cancellation: As described in Section 4.2.4, the

user can move a T-junction in the up, down, left and right directions. With this

T-junction movement operation, it is possible to completely cancel or reduce a pair

of T-junctions to be a single irregular element pair by colliding their adjacent v3-v5

pairs in the
√
CC domain, depending on the conditions described in Proposition 4.2.7.

Like the triple cancellation operation, the movement path can be found automatically

with topological and geometric heuristics or manually by the user.
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Smoothing: The user can smooth the mesh using Laplacian smoothing with back

projection similar to the methods used in Tarini et al. (2010). T-junctions can be

treated as a special case to ensure that the two edge segments are collinear as described

in Lai et al. (2008). The visualizations of the edited meshes shown in this chapter

are generated in this fashion unless otherwise specified.

4.4 Applications and Results

We implemented our mesh editing framework in C++ using CGAL cga (2014)

such that all edits could be performed interactively.

Comparing Various QD Mesh Design Strategies: We evaluated different QD

mesh editing strategies in the context of mesh design and mesh optimization. In

our first example, we modeled three versions of a wing of the Yas-Island architec-

tural model and optimized the three meshes for planarity and angle deviation (ap-

proximated by the fairness term) Liu et al. (2006). In Figure 4.9, we visualize the

optimization results. Our analysis shows that pure quad meshes are best for ensur-

ing planarity, although meshes with mixed types of faces can achieve better angle

deviation (and better smoothness of mesh lines).

In Figure 4.8, we show three versions of a tower model. The first version is a pure

quad mesh and the third version is the dual of the first mesh and has therefore no

irregular vertices. The second version has both irregular vertices and faces. This ex-

ample was chosen to illustrate that the flexibility of quad-dominant meshes generally

allows the designer to achieve smoother mesh lines using irregular faces in smooth or

flat regions while preserving sharp features using irregular vertices.
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Mesh Connectivity Improvement: In Figure 4.10, we illustrate the T-junction

editing capabilities of our framework. T-junctions can be merged or moved to alter

a mesh design.

Finally, in Figure 4.11, we show connectivity editing of a highly irregular mesh

model (generated by the remeshing algorithm of Lai et al. Lai et al. (2008)). Even

though there are highly irregular regions (including a 9-sided polygon), our editing

framework can easily facilitate local mesh improvement. While we do not aim to

replace automatic remeshing algorithms, local mesh editing has many unique advan-

tages and provides a nice complement.
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Figure 4.4: The Four Possible Movement Directions for a T-junction.

Each direction (a red arrow) is realized by applying two consecutive atomic basic
operations (quad collapses, blue arrows, and edge splits, green arrows) to the cor-

responding v3-v5 pair in the
√
CC domain. The gray faces are marked for ease of

inspection.
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Figure 4.5: Cancellation of a T-junction Pair.

How a T-junction pair can be canceled in the four possible relative orientations
(up to rotational symmetry) within an otherwise regular (4-sided) region R. Two
T-junctions can be completely canceled if and only if they are facing the opposite
sides of R (1). Otherwise they are either facing the same side (2) or two adjacent
sides (3,4) and can be reduced to an irregular element pair of the same type.
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Figure 4.6: Visualization of the Four Possible Movement Directions of a Pair of
Irregular Elements.

Left: a v3-f5 pair. Middle: a v5-v5 pair. Right: an f3-f3 pair) in both the primal

(top) and
√
CC (bottom) domains.

Figure 4.7: Converting the Type of a Single Irregular Element.

Left: an f5 is converted to an f3-v5-v5 triple. It can be viewed as type-changing the
f5 to a v5 or changing the sign of its index (an f5 to an f3). An adjacent irregular
element pair is introduced. Right: a similar operation where an f3 is converted to
a v3-v3-f5 triple. The corresponding v3/v5 movement and v3-v5 pair generation

operations in the
√
CC domain are shown below.
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Figure 4.8: A Comparison of Different Kinds of QD Mesh Irregularity.

In our framework, the user can edit irregular vertices (with more or fewer than four
neighbors) and irregular faces (non-quads) of a quad-dominant mesh. Each type of
irregularity has different advantages and disadvantages in design and construction.
Irregular vertices are necessary to maintain sharp features (corners and edges), but
they create higher angle deviations in mesh lines in smooth regions (left). Irregular
faces lead to smoother mesh lines, but they cannot maintain sharp features (right).
The ability to model with a mixture of irregular vertices and faces gives more flexibility
to the user, e.g. creating a design with sharp features and smooth mesh lines (middle).
We render each model in a style that highlights the sharp features.

Figure 4.9: Geometric Optimizations of Three QD Mesh Designs of an Architectural
Panel Structure.

Geometric optimizations of three QD mesh designs of an architectural panel struc-
ture: a pure quad mesh with four v5, a QD mesh with four pentagons, and a QD
mesh with four triangles plus eight adjacent v5. Left three: the three meshes are
optimized toward equiangular faces, which is approximated by the fairness term Liu
et al. (2006). Right three: the three meshes are optimized toward planar faces. Their
mean and max errors are listed and visualized (explained in Figure 4.10). In general,
by allowing a mixture of face types the meshes can be optimized with better angles.
On the contrary, pure quad meshes work slightly better with planarity optimizations.
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Figure 4.10: Finding Alternative QD Meshes for a Semi-Regular Quadrangulation
with T-junctions of an Architectural Structure.

(1) We focus on a part of the whole structure that has an excessive amount of T-
junctions in order to align with the underlying curvature. We first explore alternative
T-junction patterns by moving them vertically (1a) and horizontally (1b). (2) to (4a)
We progressively merge nearby T-junctions until we are left with a pair of irregular
elements with opposite indices (an f3-f5 pair), at the cost of being less aligned with
the curvature. The user can choose a version that compromises mesh regularity and
curvature alignment. (4b) Alternatively, we change the f3-f5 pair to a v3-v5 pair.
Interestingly, the QD mesh with irregular faces (4a) can be smoothed to a greater
degree than can the QD mesh with irregular vertices (4b), resulting in smoother
mesh-lines and less extreme angle deviations (on top we show the histograms and
color visualizations of the angle deviations. Each face is visualized by the averaged
deviation from the mean value of corner angles).

Figure 4.11: Connectivity Improvement of a QD Remeshing from Lai et al. (2008).

(1). (2a) to (2b) We improve a region with faces with very large degrees (due to mul-

tiple incoming T-junctions) by regularizing the corresponding
√
CC domain (shown

below). (3a) to (3b) Another improved region. (4) The final improved mesh. We first
remove excessive and nearby irregular elements. Next we move the remaining irregu-
lar elements to regions with corresponding curvatures. For demonstration purposes,
we further change all irregular faces to be irregular vertices to make the mesh pure
quad.
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Chapter 5

EXPLORING QUADRANGULATIONS

Existing quadrangulation algorithms tackle surface remeshing problems using op-

timization frameworks. While users may obtain slightly different results by adjusting

the optimization parameters, a systematic exploration of alternative quadrangula-

tions is not feasible. By contrast, our goal is to help users to explore all possible

topologically unique quadrangulations of an input mesh in an efficient and organized

way.

The first challenge is the enumeration of topologically unique quadrangulations.

Without constraints, the possibilities are innumerable. Thus, we take a two-stages ap-

proach: in the first stage, the input mesh is segmented into surface patches, typically

along sharp features. Since patch boundaries need to be matched, i.e., no T-junctions

are allowed, finding the boundary configurations that make all patches jointly quad-

rangulatable may be challenging. We show that the problem can be formulated as a

linear integer program. In the second stage, topologies are enumerated for each patch

with the guarantee that the patch boundaries will match.

Exhaustively enumerating all possible quadrilateral topologies for a patch within

a reasonable time is made possible by the following fact: assuming that the number

of irregular vertices should be minimized, any complex patch of a quadrangular mesh

can be subdivided into a collection of certain patches that we call simple patches.

Fueled by this idea, our enumeration algorithm subdivides each patch into a collection

of simple patches that are quadrangulated by a closed-form solution. The task of

enumerating topological variations thus become much more manageable because we

only need to enumerate different ways to perform the aforementioned subdivisions.

62



Figure 5.1: Overview of Our Quadrangulation Framework.

(a) A control graph is generated by segmenting the underlying input mesh into
a collection of surface patches. (b) The numbers of vertices on each edge can be
computed by integer programming such that all patches are quadrangulatable by the
minimum number of irregular vertices. Exhaustive enumerations of all topologies
with the minimal number of irregular vertices for every patch are shown. (c) By
picking one desired topology for each patch (marked), a full requadrangulation of the
mesh can be generated.

Inundating users with hundreds, even thousands, of possible variations in an ar-

bitrary order is a job only half done. The second challenge is to help users efficiently

navigate the solution space. We propose three approaches to tackle this challenge.

First, the enumeration can be guided by a sampling method, so that a snapshot of the

whole solution space can be quickly retrieved. Second, variations that are topologi-

cally similar, i.e., isomorphic graphs under a rotational symmetry, can be clustered

to reduce visual clutter. Third, variations can be sorted by both the topological and

the geometric characteristics of the quadrangulation.

Finally, we demonstrate why topological exploration is important by showing sev-
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eral examples for which alternative quad mesh layouts can be useful.

5.1 Chapter Overview

5.1.1 Basic Definitions

The valence of a vertex, v, which we denote as l(v), is the number of edges in

the mesh incident to v. A vertex with valence n is denoted as vn, e.g., v3 and v5.

A v4 vertex is considered as regular, and vertices of other valences are referred to as

irregular. We consider irregular vertices with valences lower than 3 or higher than 5 as

multiple v3 or v5 collocated together (and therefore count them as multiple irregular

vertices).

Definition 5.1.1 A path γ is a sequence of edges ei = (vi, vi+1) for 0 ≤ i < R. R is

the length of γ. A path is a loop if v0 = vR. Otherwise, γ is an open path.

Definition 5.1.2 A (quadrilateral) patch P is a connected subset of the quadrilater-

als in a mesh M without handles and it is enclosed by one or multiple loops, which

we denote as P ’s boundaries. A patch is regular if there are no irregular vertices in

its interior. Each vertex along the boundary can be a non-corner, convex corner, or

concave corner. Convex and concave corners divide the boundary into several sub-

paths, which we denote as sides. A patch is convex if it does not contain any concave

corners; otherwise, it is concave.

Definition 5.1.3 Each boundary loop of a patch can be encoded by the length of sides

and the type (convex or concave) of corners encountered during a closed, counterclock-

wise walk, beginning at an arbitrary vertex. During the walk, we keep a conceptual

facing direction as a signed integer, beginning at zero. It is incremented by one when

a convex corner is encountered, and decremented by one when a concave corner is

encountered. We assign each side a direction given the current facing direction when
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it is encountered. Sides with the same direction are grouped together to form an ef-

fective side. A patch with N effective sides is called an N-sided polygon or N-gon for

short.

Definition 5.1.4 For a patch with all irregular vertices in its interior, Int, the total

valence deficit, TV D, is
∑

i∈Int 4− l(vi).

The extension to patches with irregular vertices on the boundary is straightforward

but cumbersome to describe so we omit it here. Interestingly, the TV D of a patch

can be derived from its boundary loops, a direct result of the discrete Gauss-Bonnet

theorem for surface with boundaries. For a patch with one boundary loop, its TV D

can be derived as 4− n, where n is the number of convex corners minus the number

of concave corners on the boundary. The TV D of patches with multiple boundary

loops is described in Section 5.3.1.

5.1.2 Framework Overview

An overview of our framework is shown in Figure 5.1. The input to our system

is a polygon mesh of arbitrary type, e.g., triangular, quadrilateral, or hybrid, rep-

resenting a two-manifold surface. The input mesh serves as guidance for generating

the control graph, which is a cage-like structure that encodes a patch segmentation

of the input mesh (Section 5.2). The patches of the control graph serve as the inputs

to our quadrangulation algorithm that has the ability to exhaustively enumerate all

possible quadrilateral topologies, i.e., remeshing, within each patch (Section 5.3). To

help users navigate the potentially huge space of possibilities, we propose a sampling

strategy such that a snapshot of the whole solution space can be quickly retrieved

(Section 5.3.4). In Section 5.4, we show that the task of finding boundary constraints

that make all patches jointly quadrangulatable can be formulated as a linear integer
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programming problem.

5.2 Control Graph Modeling

A control graph is a cage-like structure that encodes a segmentation of the input

mesh. In essence, it is a coarse two-manifold mesh comprised of (curved) edges on

the input mesh and faces that we call surface patches. The surface patch is required

to be pathwise-connected, without handles, with at least one boundary loop, but not

necessarily simply connected, e.g., a topological disc with zero or more holes. In our

system, a control graph is generated either automatically by detecting sharp features

using angle thresholds, or interactively by clicking on specific edges, or imported from

another existing algorithm.

The control graph also encodes topological constraints for the subsequent patch

quadrangulations that can be obtained by linear integer programming to satisfy ad-

ditional requirements, e.g., all patches need to be quadrangulatable. For each edge

of the control graph, we determine the number of vertices on the edge such that the

number of boundary vertices for all patches is given. Further, we define the number

of inward edges for each vertex on the boundary by classifying the vertices as convex,

concave, or non-corner emanating none, two, or one inward edges, respectively. See

Figure 5.2a for an illustration. In the following, we present an algorithm and interface

to enumerate and explore the different topologies for one patch at a time with fixed

boundary constraints. In a typical usage scenario, the user iterates between exploring

the topologies of different patches and editing topological boundary constraints.

Parameterization: We build a 2D parameterization for each patch to initialize

the vertices with 2D positions during the topological enumeration. We typically use

LSCM Lévy et al. (2002) in favor of its conformal and open boundary traits. We

emphasize that a pure topological enumeration can work even without parameteri-
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zation. The parameterization is used simply for visualization and sampling/ranking

purposes. Inputs to the parameterization are the faces and vertices of the input mesh

enclosed by the patch’s boundary. Since sharp features are typically captured in the

control graph, we assume that the parameterization will be of reasonable quality. In

practice, LSCM may generate non-bijective parameterizations if the patch’s shape is

highly concave or has inner boundaries. We currently work around the problem by

subdividing patches. A better solution to this problem would require implementation

of more advanced parametrization algorithms.

5.3 Enumerating Quadrangulations for Patches

The input for this stage is a patch including its boundary configuration, i.e., the

vertices at the boundary and their prescribed number of inward edges. A quadran-

gulation has to form connections between all inward edges. At a glance, the task can

be intimidating. There are O(x!) possible ways to connect x inward edges such that

an exhaustive enumeration is simply infeasible. Besides, inner irregular vertices, of

which the types, numbers, and positions are unknown, can divert the connections and

create additional complexity. The main idea of our approach is to use the observation

that every quad mesh can be partitioned into certain simple patches that contain one

or zero irregular vertices (See Figure 5.2b). The enumeration problem is thus greatly

reduced to enumerating subdivisions into simple patches.

Another important idea of our approach is to devise an exploration strategy that

can enumerate a reasonable subset of all possible quad meshes. Since every non-

trivial boundary corresponds to infinitely many pure quad meshes, we need to restrict

the enumeration somehow. Our assumption is that irregular vertices are typically

considered as undesirable in our primary target applications, because they break

the pattern on the surface. Our exploration algorithm is therefore geared towards
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(a) (b)

Figure 5.2: Definition of a Path and the Decomposition of a Complex Quadrangula-
tion.

(a) A boundary configuration of a patch with two boundary loops, each shown as a
strip of arrows in counter-clockwise (outer) and clockwise order (inner). Prescribed
inward edges are shown as arrows pointing inwards. Note that convex corners (shown
in blue) emanate no inward edge while concave corners (shown in red) emanate two
inward edges. (b) Decomposing a complex quadrangulation into a collection of simple
triangle (blue) and pentagon (yellow) patches.

(a) (b) (c)

Figure 5.3: Subdivision Steps to Quadrangulate a Simple Convex Patch.

Subdivision steps to quadrangulate a (a) parallelogram, (b) triangle, and (c) pen-
tagon. Inner v3s are shown in cyan and inner v5s are shown in orange. For a triangle
and a pentagon, the topological position of the irregular vertex is uniquely obtained
by solving a linear system. For visualization purposes, we locate the inner v3 or
v5 at the least squares solution of the location that is perpendicular to the nearest
boundary vertex on each side in the parameterization domain.

enumerating solutions with the minimal number of (inner) irregular vertices (v3 and

v5) k, k ≥ |TV D|. We can therefore also bound the number of quads to a reasonable

number as a secondary criterion.

In this section, we first present the overall subdivision algorithm in Section 5.3.1.

The algorithm relies on the efficient enumeration of subdivisions, which is described

in Section 5.3.2. Strategies to filter redundantly generated subdivisions are described
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in Section 5.3.3. For larger examples, the enumeration might be time consuming. We

therefore propose a fast sampling strategy to generate interesting topology variations

early in Section 5.3.4. Finally, we propose tools to preview and arrange the topological

variations in Section 5.3.5.

5.3.1 Subdivision-based Quadrangulation of Patches

Our quadrangulation algorithm hierarchically subdivides a patch into smaller sub-

patches until every sub-patch has become a quad. The process can be described by a

subdivision tree: the root node is the input patch, the internal nodes are sub-patches

that need further subdivision, and the leaf nodes are quads. We explore this tree depth

first, and for each interior node we first try to classify the patch and then subdivide

it. In order of complexity, we distinguish five categories: 1) simple convex patches,

2) simple concave patches, 3) patches with |TV D| ≤ 1, 4) general patches with a

single boundary loop, and 5) patches with multiple boundary loops. We describe how

to classify and quadrangulate these five categories of patches in the following. The

categories form a nested hierarchy, so that each lower category is a subset of all higher

ones. The strategy of the quadrangulation algorithm is then to split higher-category

patches into lower-category patches.

Simple Convex Patches

A simple convex patch is either a parallelogram, simple triangle, or simple pentagon,

defined as follows.

Definition 5.3.1 A parallelogram is a convex 4-gon with two pairs of opposite sides

of the same length. A simple triangle is a convex 3-gon that can enclose exactly one

v3. A simple pentagon is a convex 5-gon that can enclose exactly one v5 (Figure 5.3).
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(a) (b)

Figure 5.4: Examples of Boundary-case and Non-embeddable Patches.

(a) Left and middle: Two examples of boundary-case pentagons. Right: A boundary-
case triangle. (b) A patch with a boundary that is incompatible with its potential
embedding in a 4-by-8 parallelogram.

In the following discussions, we refer to simple triangles and pentagons as triangles

and pentagons. Recall from Peng et al. (2011) that the topological position, i.e., the

nearest boundary vertex on each side and the graph distances in between, of a single

v3 or v5 within a convex 3-gon or 5-gon can be uniquely derived by solving a linear

system formed by the side lengths. An inner irregular vertex is feasible if and only

if all distances to the sides are positive. If some distances are zero, the irregular

vertex actually lies on the corresponding boundaries, which we denote as boundary

cases. Interestingly the feasibility criteria are analogous to their Euclidean space

counterparts: For a convex 3-gon to be a triangle, the length of the longest side has

to be smaller than the sum of the other two. For a convex 5-gon to be a pentagon,

the sum of the longest consecutive two sides has to be smaller than the sum of the

other three.

Quadrangulation of Simple Convex Patches: A parallelogram is recursively

subdivided into smaller parallelograms along the longer pair of opposing sides (Fig-

ure 5.3a). For a triangle or a pentagon, we first create the inner v3 or v5 and connect

it to each side according to the solution of the linear system mentioned previously.

The connections subdivide the patch into three or five parallelograms, which are sub-

sequently subdivided (Figure 5.3b, 5.3c). Special care is taken for boundary cases: a
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triangle with a boundary v3 is equivalent to a parallelogram and a pentagon with a

boundary v5 is equivalent to a combination of multiple parallelograms (Figure 5.4).

In practice, we pre-calculate the quadrangulations of simple convex patches of various

side lengths to accelerate the algorithm.

Simple Concave Patches

A simple concave patch is a single-boundary loop concave patch that can be embedded

in a simple convex one with the same TV D, denoted as the patch’s extended patch.

This is achieved by the cave-filling algorithm (Appendix A). Figure 5.5 shows simple

concave patches embedded inside a parallelogram, triangle, or pentagon.

To determine if patch P is simple concave, we check the following in order. 1) The

TV D of P has to match a parallelogram (0), triangle (1), or pentagon (−1). 2) P has

a valid extended patch, P̂ , according to the cave-filling algorithm. 3) The side lengths

of P̂ , which is a convex polygon with three to five sides, have to be compatible with

a triangle, parallelogram, or pentagon. 4) We check if the embedding is valid, i.e.,

the boundary of P does not penetrate the boundary of P̂ (computed by a boundary

walk). A counter-example is shown in Figure 5.4b.

Quadrangulation of Simple Concave Patches: Conceptually, we first quad-

rangulate the extended patch and then remove the quads that were added by the

cave-filling algorithm. For an accelerated implementation we can directly compute

the splits for the concave patch in closed form (Figure 5.6).

Patches with |TV D| ≤ 1

This category covers arbitrary (possibly concave) single-boundary loop patches, P ,

with |TV D| ≤ 1 that do not fall in the previous two categories. There are the

following possibilities: 1) P does not have a valid extended patch P̂ according to the
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(a) (b) (c)

Figure 5.5: Embeddings of Simple Concave Patches.

Simple concave patches embedded inside a (a) parallelogram, (b) triangle, and (c)

pentagon. P is shown in gray and the embedding into P̂ is shown in yellow.

(a) (b)

Figure 5.6: Closed-form Solutions for Quadrangulating Simple Concave Patches Em-
beddable Inside a Parallelogram (a) and a Triangle (b).

cave-filling algorithm. 2) The side lengths of P̂ are incompatible with a parallelogram,

triangle, or pentagon. 3) P ’s embedding is invalid, i.e., the boundary of P penetrates

the boundary of P̂ . Our strategy is to subdivide such a patch recursively until it is

decomposed into a collection of simple concave or convex patches, explained in the

following.

For the second kind of patch, additional inner v3-v5 pairs are necessary for the

patch to be quadrangulatable. Note that v3-v5 pairs do not affect the patch’s TV D.

We distinguish three cases:

• P̂ is a convex 4-gon but not a parallelogram. The quadrangulation requires one

or more v3-v5 pairs. We subdivide P into a triangle, which can be quadrangu-
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(a) (b) (c)

(d) (e)

Figure 5.7: Subdivisions of Non-simple Patches.

(a) A non-simple patch with TV D = 0 is subdivided into a triangle and a pentagon.
(b) A non-simple patch with TV D = 1 is subdivided into a triangle and a general
4-gon. (c) A non-simple patch with TV D = −1 is subdivided into a pentagon and
a general 4-gon. (d) A patch with TV D = 5 is subdivided into two sub-patches of
TV D = 3 (left) and 2 (right). (e) A patch’s two boundary loops are combined into
one by making a cut connecting the outer and inner boundary loops. The subdivi-
sions/cuts are shown in red.

lated in closed form, and a general 5-gon, which is subsequently quadrangulated

(Figure 5.7a).

• P̂ is a convex 3-gon but not a triangle. The quadrangulation requires a v3 plus

one or more v3-v5 pairs. We subdivide P into a triangle and a general 4-gon

(Figure 5.7b).

• P̂ is a convex 5-gon but not a pentagon. The quadrangulation requires a v5

plus one or more v3-v5 pairs. We subdivide P into a pentagon and a general

4-gon (Figure 5.7c).
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For the first and third kinds of patch, we simply subdivide it heuristically by the

scoring function described in Section 5.3.4.

General Single-Boundary Loop Patches

This category covers arbitrary single-boundary loop patches (not classifiable in the

previous categories). Since these patches have to be subdivided, our aim is to mini-

mize the number of subdivisions by keeping the TV D of the two sub-patches as equal

as possible. Empirically, this leads to fewer splits and approximately logarithmic time

complexity. Thus, at every recursion, a patch of TV D = t is subdivided into two

sub-patches of TV D = d|t|/2e and b|t|/2c. An example is shown in Figure 5.7d where

a patch with TV D = 5 is subdivided into two sub-patches of TV D = 3 and 2.

Multi-Boundary Loop Patches

This category covers patches with g + 1 boundary loops (g > 0). Since the patch

is connected, the boundary loop with the largest bounding box in the 2D parameter

domain is distinguished as the outermost contour, while all other boundary loops

are considered contours surrounding inner holes. To quadrangulate P , edge strips

connecting the outermost contour and each inner contour are required. A connection

bridges the inner contour to the outermost contour with four additional convex corners

at the two joints. Eventually, all boundary loops are merged and the patch has a

unified boundary loop. The TV D of the patch thus can be calculated as the number

of convex corners minus the number of concave corners on all boundary loops, plus

the additional four convex corners per connection.

To quadrangulate a multi-boundary loop patch, we first transform it into single-

boundary loop by making g aforementioned connections suggested by the scoring

function described in Section 5.3.4. An example is shown in Figure 5.7e.
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5.3.2 Enumerating Subdivisions

Recall that our quadrangulation algorithm recursively subdivides a patch until it

is decomposed into a collection of simple convex and simple concave patches, which

are then uniquely quadrangulated. At each subdivision, we face the choices of 1)

which pairs of inward edges to connect and 2) how many inner vertices to generate

on the connecting path, i.e., its (topological) length. Enumerating these choices at

every recursion is equivalent to enumerating the topologies of a patch. The guidelines

to constrain the enumeration are given below.

The choices of which pair of inward edges to connect are well constrained: when

subdividing patches of the third and fourth categories, only connections that would

lead to sub-patches with desired TV D are acceptable. When subdividing patches of

the fifth category, only connections of inward edges of different boundary loops are

acceptable. Constraints for the length of the connection path are described as follows.

1. The lengths of boundaries of the resulting sub-patches need to be even, other-

wise no quadrangulation exists.

2. Except for parallelograms, which can be quadrangulated without inner irregular

vertices, the length of every effective side needs to be ≥ 2 since such a sub-patch

must accommodate at least a triangle (for v3) or a pentagon (for v5), of which

every effective side length is at least 2.

3. Requirements for sub-patches to be simple (parallelogram, triangle, and pen-

tagon), which occur at subdividing patches of the third category, constrain the

length of the connection to be a single value (parallelogram) or within a range

(triangle and pentagon).

4. Requirements for sub-patches to have more than five effective sides (TV D <
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−1), which occur at subdividing patches of the fourth category, constrain the

length of the connection under the assumption of Theorem 5.3.2.

Note that the third and fourth constraints are applicable only under the assump-

tion that redundant v3-v5 pairs are to be avoided; otherwise, connections of arbitrarily

long lengths can be accommodated by an arbitrary amount of v3-v5 pairs.

(a) (b)

Figure 5.8: Supporting Figures for the Proof of Theorem 5.3.2.

(a) A quadrangulation of a 7-sided convex patch with the inequality in Theorem 5.3.2
being exactly satisfied, i.e., the longest consecutive pair of sides (red) cannot be any
longer if the lengths of other sides are fixed. The 2|TV D| edges on the other sides
and their emanating polychords that can never reach the longest pair are marked
in green. (b) Left: quadrangulation of an 8-sided convex patch with the inequality
in Theorem 5.3.2 being exactly satisfied. Right: the corresponding base pentagon
quadrangulated with a boundary-case solution. Side S of the pentagon is shown in
green, which is expanded to be the patch’s sides S3 to S6 with a strip of quads (green
and yellow) and the three inner v5s (marked) inserted accordingly. Note that the
lengths of S2 and Sn−1 are also increased by one.

Theorem 5.3.2 Under the assumption that a patch is convex, TV D < −1, and the

sum of the lengths of boundaries is even. Then, the patch is quadrangulatable without

inner v3-v5 pairs ⇐⇒ the sum of the lengths of the longest consecutive pair of sides

≤ the sum of the lengths of all other sides minus 2|TV D|.

Proof ⇒: Every polychord ( Daniels et al. (2008)) emanating from an edge of the

longest consecutive pair of sides must end at the other sides; otherwise, it would

76



Figure 5.9: The Quadrangulations with the Minimal and Maximal Numbers of Quads
for a 2-sided Patch.

The quadrangulations with the minimal and maximal numbers of quads for a 2-sided
patch with side lengths (7, 7) (left) and a 1-sided patch with side length 10 (right).
Note that there are two v3 collocated as a v2 in the quadrangulations of the 1-sided
patch.

subtract a 2-sided polygon (ending at the same side) or a triangle (ending at the

adjacent side) out of the patch. In both cases, an inner v3 is implied, a contradiction

to our assumption that patch has TV D < −1 (thus having v5) and no v3-v5 pairs.

Furthermore, there are 2|TV D| edges on the other sides that can never emanate a

polychord to the consecutive pair of sides (Figure 5.8a).

⇐: We denote the lengths of the longest consecutive pair of sides as s0 and s1

and the lengths of the other sides as s2 to sn−1 in counter-clockwise order. Our idea

is to show that there exists a corresponding base pentagon, see Figure 5.8b, that

can be quadrangulated with a boundary-case solution, and that there always exists

a way to extend the quadrangulation of the pentagon to be a quadrangulation of the

patch. The lengths of the base pentagon’s sides are: s0, s1, s2 − 1, S, and sn−1 − 1

in counter-clockwise order, where S =
∑n−2

i=3 si − 2(|TV D| − 1). Note that si ≥ 2,

0 ≤ i < n by the aforementioned second constraint. It is straightforward to see that

the pentagon can be quadrangulated with a solution in which the v5 is lying in the

interior of side S. A quadrangulation of the patch can be then generated by inserting

a strip of quads and |TV D| − 1 v3-v5 pairs (the v3s are on the patch’s boundary,

serving as corners, and the v5s are internal) at corresponding locations right next to
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side S. See Figure 5.8b for an example.

On the other hand, for sub-patches with TV D > 1, the length of an effective side

can be arbitrarily long, since there exists a polychord that begins and ends at the

same effective side. Since the choice of the length of the connection is unbounded, we

resort to the constraints for the maximal number of quads described next.

Theorem 5.3.3 When quadrangulated with two v3s and no v5, the maximal number

of quads in a 2-sided patch (TV D = 2) with side lengths b0 and b1 is bb0/2cdb1/2e+

db0/2ebb1/2c.

Theorem 5.3.4 When quadrangulated with three v3s and no v5, the maximal number

of quads in a 1-sided patch (TV D = 3) with side length b0 is (b0b0)/4− 1.

Proofs of Theorem 5.3.3 and 5.3.4 are based on analyzing the decomposition of

the patches into triangles and are omitted here. A 2-sided and a 1-sided patch quad-

rangulated with the maximal and minimal numbers of quads are shown in Figure 5.9.

Finally, for sub-patches with TV D ≥ 4, the number of quads can be arbitrarily large

even with fixed side lengths, since such a patch may contain an infinite amount of

inner polychord cycles. For such cases, we constrain the length of the connection by

geometric heuristics.

Thresholding the Number of Irregular Vertices: |TV D| determines the

lower bound of (inner) irregular vertices (v3 and v5) required to quadrangulate a

patch. The lower bound can be achieved only if irregular vertices of one type are

solely used (v3 or v5). However, such solutions may not be feasible, e.g., for skewed

patches, additional v3-v5 pairs will be needed. Restricting the number of irregular

vertices is thus equivalent to setting an upper limit on the number of v3-v5 pairs.

To retrieve solutions with the minimally possible numbers of irregular vertices, our
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strategy is to enumerate quadrangulations with an increasing upper limit of v3-v5

pairs, beginning at zero. Empirically, we found that the space of enumerations grows

exponentially with the number of allowed v3-v5 pairs. The computational overhead

of the unsuccessful trials with insufficient upper limits for v3-v5 pairs can thus be

neglected.

5.3.3 Filtering Redundant Enumerated Topologies

A challenge of our enumeration framework is that multiple enumerated subdivision

trees can result in equivalent topologies, corresponding to the multiple ways to de-

compose a quadrangulation into simple patches. We reduce exploration of redundant

subdivision trees by filtering parallel connections defined as follows.

Definition 5.3.5 Two connections, V 1 − V 2 connected by L1 edges and V 3 − V 4

connected by L2 edges, are parallel if: 1) V 1, V 3 are on the same side and V 2, V 4

are on the same side, 2) L1 = L2, and 3) the lengths of the boundaries between V 1,

V 2 and V 3, V 4 are the same.

From a set of parallel connections, we pick the highest ranked one according to

the heuristics described in Section 5.3.4 and discard the rest. Examples of parallel

connections are shown in Figure 5.10a. It is straightforward to see that the resulting

topologies of the parallel connections are different only by a parallelogram in between

(assuming that v3-v5 pairs are to be avoided) and thus are equivalent. Note that

this filtering strategy is not yet exhaustive, and there may be redundant connections

being explored. An analysis of the filtering performance is provided in Section 5.5.

Finally, we filter enumerated topologies that are equivalent, i.e., graph isomor-

phic. Recognizing graph isomorphism can be done in linear time in our case since

the topologies share the same patch boundaries. An algorithm is described in the
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(a) (b)

Figure 5.10: Parallel Connections and the Ranking of Connections.

(a) Three parallel connections are shown in red. All of them subdivide the patch
into a triangle and a pentagon and result in equivalent topologies. Note that the top
one leads to a boundary-case triangle and the bottom one leads to a boundary-case
pentagon. (b) Comparing the ranking of connections. Connection C1 is top-ranked.
C2 is ranked lower because it is less perpendicular to the boundary edges at its two
vertices. C3 is also ranked lower because the geometric length of its subdivided edges
deviates from the average length of the patch’s boundary edges. C4 is ranked lowest
because it goes outside the 2D parameter domain.

following.

Recognizing Graph Isomorphism: Vertices of a certain topology are ordered

in increasing order according to their topological distance from the patch boundary.

The boundary vertices, of which the distances are 0, are sorted in a counter-clockwise

fashion starting at a fixed boundary vertex. Inner vertices with distance d (d > 0)

are sorted as follows. We define the parent vertex of an inner vertex as the one that is

sorted foremost among its adjacent vertices of distance d− 1. For two inner vertices

V 1 and V 2, V 1 is sorted prior to V 2 if V 1’s parent vertex is sorted prior to V 2’s and

vice versa. If their parent vertices are the same, V 1 is sorted prior to V 2 if it is prior

among the parent vertex’s neighbor list and vice versa. Such orderings can be found

by a simple flooding strategy in linear time. It is straightforward to see that such an

ordering is unique for a given topology. This algorithm is thus guaranteed to detect

graph isomorphism among equivalent topologies. See Figure 5.11b for an example.
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(a) (b)

Figure 5.11: Topology Profile and Ordering of Vertices.

(a) A quadrangulation of which the topology profile is
{(3, 3, 4), (1, 1, 1, 4, 8), (1, 2, 3, 3, 4)}. (b) Ordering of vertices in a patch for the
graph isomorphism test.

5.3.4 Ranking and Sampling Topological Variations

We can retrieve a quick snapshot of the whole space of enumerations by sampling

only a subset of connections at each recursion. First, we rank each connection by a

simple scoring heuristic considering the following geometric properties. Highly ranked

connections have a better chance to generate quadrangulations with better geometric

qualities and vice versa. Assuming that the connection is a straight line in the 2D

parameter domain connecting V 1 and V 2 uniformly subdivided into L1 edges, we

first measure how perpendicular the connection is to the boundary edges at V 1 and

V 2. A more perpendicular connection means that we have a better chance of forming

right angles at V 1 and V 2. Second, we measure the difference of the geometric length

of the L1 subdivided edges to the average geometric length of the patch’s boundary

edges. A smaller difference implies a more appropriate choice of L1. Third, we favor

the geometrically shorter among connections that are equally ranked by the first two

properties. Finally, we penalize connections that go outside the 2D parameter domain,
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which may happen for patches with geometrically concave parts. An illustration of

the ranking is shown in Figure 5.10b.

After the connections are sorted by the heuristic, we can perform sampling in

an uniform or greedy way. In the uniform way, we sample one connection among

similarly ranked connections at each recursion. A snapshot that covers a variety

of quadrangulations can thus be retrieved. In the greedy way, we simply sample the

top-ranked connections, such that a subset of quadrangulations with better geometric

qualities can be retrieved. In both ways, the exploration is done in a depth first

manner but with the number of child nodes at each branch reduced.

5.3.5 Navigating Topological Variations

We develop a real-time browsing interface to help users visually navigate topo-

logical variations. Note that only unique topologies are presented after the afore-

mentioned filtering process. Since enumerated topologies are updated in real time,

the aforementioned ranking heuristics play an important role by determining which

topologies are presented first. A reasonable 2D visualization for each topology is

generated by applying Laplacian smoothing with the boundary vertices fixed.

Users can choose to sort the topological variations by three types of statistics:

1) density (number of quads), 2) geometric quality criteria described in Yang et al.

(2011), and 3) the topology profile described next.

Assume that there are n (inner) irregular vertices in a topology, vi, 0 ≤ i < n,

sorted in ascending order of valences: l(vi) ≤ l(vi+1), 0 ≤ i < n−1. For each irregular

vertex, vi, the sequence, si,j for 0 ≤ j < l(vi), denotes the lengths of emanated

separatrices stopped by hitting the boundary or other interior irregular vertex, which

are sorted in ascending order. Sequences of each irregular vertex are further sorted in

ascending order by considering each sequence as a decimal number. For example, a

82



sequence of 3− 4− 5 from a v3 is placed before a sequence of 0− 1− 2− 3− 4 from a

v5. The sequences of all irregular vertices congregated in the sorted order serve as a

topological profile summarizing the relative positions of the inner irregular vertices,

see Figure 5.10.

Furthermore, topological variations that are rotationally equivalent, i.e., corre-

sponding to one topology being rotated, have the same topological profile. Such

variations can be identified and clustered to reduce visual clutter.

5.4 Integer Programming

Assigning numbers of vertices lying on each boundary edge of a control graph

path, i.e., their (topological) length, can be a non-trivial task when there exist addi-

tional requirements for the patches. We formulate the task as a linear, pure integer

programming problem in which the variables are the lengths of edges and each patch

imposes its requirements as linear constraints. We denote the length of the i-th edge

as a positive integer variable, Li, 0 ≤ i < n, where n is the number of edges. A

minimal requirement for all patches to be quadrangulatable is that the sum of side

lengths is even for every patch, written as
∑

Li∈Pj
Li− 2Sj = 0 for every patch Pj (Sj

are positive integer slack variables). It is straightforward to see that feasible solutions

exist, e.g., if every side length is even. To further require that certain patches can be

quadrangulated without v3-v5 pairs, the following constraints are added:

• For a patch with non-zero TV D, lengths of every side ≥ 2. This corresponds

to the second constraint of connection lengths in Section 5.3.2.

• For a triangle (TV D = 1), parallelogram (TV D = 0), and pentagon (TV D =

−1), side lengths are constrained by Definition 5.3.1.

• According to Theorem 5.3.2, for a patch with TV D < −1, the sum of the
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lengths of every consecutive pair of sides ≤ the sum of the lengths of all other

sides minus 2|TV D|.

The above constraints are applicable only under the assumption that a patch is

convex and has a single boundary loop. Therefore, patches with multiple boundary

loops and concave patches need to be split with the heuristics described in Sec-

tion 5.3.1 and 5.3.4 first. In practice, we apply the above constraints to all patches

initially. If the system is overconstrained, we heuristically drop constraints for selected

patches until the system becomes feasible.

Feasible solutions to the above problem guarantee that all patches are jointly

quadrangulatable; however, they may be geometrically undesirable, e.g., geometri-

cally long edges are segmented sparsely and vice versa. To address this problem,

every edge Li is given an optimal topological length Oi as the rounded ratio of its

geometric length to a desired edge length. We first impose the following constraints:

|Li − Oi| ≤ C, 0 ≤ i < n, where C is a (non-negative integer) value threshold-

ing the feasible range of each Li. Furthermore, we formulate the cost function as∑n−1
i=0 |Li/Oi− 1| under the assumption that the length of each optimally subdivided

segment is one. Each nonlinear term (|Li/Oi − 1|) is approximated as a linear func-

tion within the feasible range of Li in a least-squares sense, e.g., as a linear equation

passing through (Oi − C, |(Oi − C)/Oi − 1|) and (Oi + C, |(Oi + C)/Oi − 1|). A

mathematical formulation of the integer programing problem is as follows.

n−1∑
i=0

|Li/Oi − 1| → min such that (5.1)

for every edge

Li > 0 and |Li −Oi| ≤ C, i = 0, . . . , n− 1
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and for every patch ∑
Li∈Pj

Li − 2Sj = 0.

Additionally, depending on the type of each individual patch, Pj,

• patches with non-zero TV D : Li ≥ 2,

• parallelograms : Li0 = Li2 ,

• triangles : Li0 + 1 ≤ Li1 + Li2 ,

• pentagons : Li0 + Li1 + 1 ≤
∑

i 6=i{0,1}
Li,

•N -gons with TV D < −1 : Li0 + Li1 + 2|TV D| ≤
∑

i 6=i{0,1}
Li

need to hold for all admissible Li ∈ Pj. We denote Lik as the length of the k-th next

side after Li in Pj in a counter-clockwise order. For example, Li0 denotes Li itself,

Li1 denotes the length of the side next to Li in Pj, and so on. We solve the problem

by lpsolve Berkelaar et al. (2008).

5.5 Results and Applications

Complexity of the Enumeration: The only competing approach, that we

are aware of, is the brute-force enumeration of all possible connections of inward

edges, e.g., Marinov and Kobbelt (2006). For simplicity, we present an example

where the number of inner irregular vertices of the patch is minimal, a 100 by 100

2-sided patch (TV D = 2). In the brute-force approach, there are a staggering 198!/2

possible connections of the 198 inward edges, even before considering the effect of inner

irregular vertices. In our approach, we need to enumerate all first-level subdivisions

between the i-th (1 ≤ i ≤ 99) inward edge of the first side and the j-th (1 ≤ j ≤ 99)

inward edge of the second side. By filtering, we just need to enumerate one connection

among all pairs with i−j = d, where−98 ≤ d ≤ 98. After the first level of subdivision,
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v3- boun. unique total time time

patch TV D v5 length topo. cluster topo. (total) (first)

Figure 5.7a 0 1 22 12 12 36 0.17 0.01

Figure 5.7e,5% -4 0 56 536 525 568 198.62 0.06

Figure 5.8b -3 0 34 7 5 77 0.28 0.00

Figure 5.14,1 -2 0 66 4 4 10 0.43 0.08

Figure 5.14,2 2 0 36 57 35 120 4.34 0.05

Figure 5.14,3 -4 0 66 559 558 3064 79.89 0.06

Figure 5.13 1 1 30 30 30 232 1.59 0.03

Figure 5.18 4 0 16 254 52 5166 23.09 0.01

Table 5.1: Timing Statistics.

Timing table showing: 1) the number of unique topologies after filtering, 2) clusters

of rotationally equivalent topologies, 3) total enumerated topologies, and 4) the time

spent for complete enumerations and retrieving the first topology in seconds.

we have two simple triangles that are uniquely quadrangulated. In total, we just need

to enumerate 197 possible cases.

Comparison to Peng et al. (2011): In the Peng et al. paper, an exhaustive

enumeration of all possible topologies involving up to two irregular vertices (v3 and v5)

is provided. In this chapter, we extend the idea to enumerate all possible topologies

of a given patch exhaustively, upper bounded by the number of irregular vertices.

Moreover, their method requires an initial mesh to work on.

Statistics: Table 5.1 shows the time spent on enumerating all topologies with the

minimal number of irregular vertices (or capped at a reasonable number of quads if

such topologies are infinite) for patches shown in this chapter, recorded on a standard

2.66GHZ PC. In most cases, the first topology is retrieved instantly. For patches with
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excessive amounts of variations such as Figure 5.7e, we only sample a fraction of all

possibilities. We find that the time complexity does not depend on the number of

vertices on the boundaries; instead, it is proportional to the number of non-parallel

connections enumerated during the subdivisions.

Shape-Space Exploration: Shape-space exploration is a powerful tool Yang

et al. (2011) to modify a planar quad (PQ) mesh, while faithfully preserving the

planarity of the faces and satisfying additional constraints like proximity to a reference

object, fairness, etc. Each mesh corresponds to a point in a high-dimensional shape

space, and the planarity constraint forms a certain manifold in that space, called

the planarity manifold. We apply shape-space exploration to investigate the most

natural behavior of different topological patterns and to understand the significance

of topology in the genesis of PQ meshes. While the original shape-space exploration

itself gives rise to a large variety of meshes with one fixed topology, we can now explore

an even wider spectrum of possible shapes by varying the topology and geometry

together.

We demonstrate how shape-space exploration interacts with various topological

patterns. In Figure 5.12, we show the variations of a 3D mesh whose planar elliptic

boundary has been fully fixed. The variations are ranked according to three different

geometric objectives (planarity, fairness, circularity) and color coded in the visualiza-

tion such that we can observe which topologies are well suited for a specific geometric

objective. A shape-space exploration that starts with a fully planar mesh is shown

in Figure5.13. Six feature vertices are selected to remain in the plane while the re-

maining vertices are freely movable. The goal of this exploration is to see the natural

shapes of each topology. As it is difficult to compare general shapes, we apply a

geometric heuristic to select the best bump shape for thirty different topologies. This

example illustrates that some topologies are more suitable for a selected target shape.
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(a) (b) (c)

Figure 5.12: Shape-space Exploration on Different Topologies.

The cap of an elliptic paraboloid is PQ meshed using twenty different topological
patterns (top row) and planarity-preserving shape-space exploration is applied on
each topology such that the boundary is fixed while the interior vertices are allowed
to move. The best eight eigendirections are sampled for each topology. The results
(clockwise) are ranked in decreasing fashion according to planarity (a), circularity (b)
and fairness (c). The color shows the affiliation with the topological pattern.

(a) (b) (c)

Figure 5.13: Shape-space Exploration of PQ Meshes.

For a 2D PQ mesh in the plane, six corner points are kept fixed and the remaining
vertices move freely to form 3D shapes. From thirty topological patterns, the best
“bumping” shape was selected. The color coding reflects the discrete Gaussian cur-
vature (a) and the average kink angle between the neighboring faces (b). (c) The
best explored mesh in terms of minimal kink angle together with its planar input is
shown.
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Exploring Alternative Requadrangulations: We show that our enumera-

tion framework enables users to explore multiple distinctive requadrangulations of an

input mesh. In Figure 5.14, we explore alternative requadrangulations of an architec-

tural tower model. Each alternative has its own advantages and disadvantages. In

general, there is a trade-off between sharp feature fidelity and the number of irregular

vertices. In Figure 5.15, we requadrangulate the Fandisk model at resolutions that

are coarser than the ones in Bommes et al. (2009) and Zhang et al. (2010) while main-

taining all sharp features. In Figure 5.17, we requadrangulate the Accessory model

in Zhang et al. (2010) to remove all the redundant v3-v5 pairs. In Figure 5.16, we

explore alternative requadrangulations of a single curved patch with two inner holes.

Throughout the examples, explorations are done not only by enumerating topolo-

gies of patches, but also by exploring different configurations of the control graphs.

The vertex positions are optimized by methods desrcribed in Liu et al. (2006) as a

post-process.

Art and Design: Topology is important for art and design when the mesh lines

or quad faces are visible. We show designs of planar Shuriken (Japanese dart) patterns

inspired by the enumerated topologies (Figure 5.18). In Figure 5.19, we show font

designs by quadrangulating the interiors inspired by Bessmeltsev et al. (2012).

Limitations and Future Work: One major limitation of our work is that we

restrict our analysis to pure quad meshes. A fruitful avenue of future work is to

analyze the topology of mixed quadrilateral and triangular meshes. A limitation of

the enumeration algorithm is that we cannot filter all redundant subdivisions early in

the process. It would be interesting to explore if there were an optimal algorithm to

detect all redundant efforts. We focus on examples from architecture, art, and design,

in which control graphs can be trivially generated. While our framework is applicable

to organic models, such as the bunny (Figure 5.20), manual efforts are required to
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Figure 5.14: Exploring Alternative Requadrangulations of an Architectural Tower
Model.

Left: the input tower model with a large number of irregular vertices and small faces
due to the computation of intersections by a professional modeling package. Second
left to right: five requadrangulations explored with our enumeration framework. The
first and second both consider the hyperboloid-shaped facade on the front as an 8-
sided patch, while the former favors uniform quad size and the latter favors alignment
of irregular vertices. The third alternatively considers the front facade as a 4-sided
patch, and four v3s are removed. The fourth no longer preserves the sharp feature
on the right, and the two adjacent patches are merged. It has fewer irregular vertices
at the cost of less sharp feature fidelity. The fifth discards all sharp features on the
front in exchange for even fewer irregular vertices.

Figure 5.15: Coarse Requadrangulations of the Fandisk Model.

Left: the input mesh from Bommes et al. (2009). Second left to right: coarser
requadrangulations with exact sharp feature fidelity. Note that for the one with 232
quads, we allow irregular vertices to appear on the patch boundaries and achieve a
more regular flow of mesh lines.
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Figure 5.16: Requadrangulations of a Single Curved Patch with Two Inner Holes.

Left: a standard requadrangulation with four v5. Middle: an alternative in which
the interior meshing is completely regular by moving the v5 to the boundaries (two
v5 are collocated as a v6). Right: another alternative that favors uniform quad size
at the cost of additional irregular vertices. The arrangement of irregular vertices
significantly influences the overall grid layout as observed from the zebra pattern
rendering.

generate the control graph. A general and fast requadrangulation method may be

achievable by combining mesh segmentation methods and our patch quadrangulation

algorithm. Finally, we did not investigate the impact of topology in simulations, e.g.,

FEM and high-order surface fitting, but we hope that our work can also have impact

on these areas.
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Figure 5.17: Requadrangulations of the Accessory Model.

Left: the input mesh from Zhang et al. (2010) with several redundant v3-v5 pairs
and unnecessary v6. Middle: a requadrangulation with the same configuration of
irregular vertices on patch boundaries. All patches are now quadrangulated without
redundant irregular vertices. Right: an alternative with different allocations of the
v5 on the top facades.
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Figure 5.18: A Gallery of Different Quadrilateral Meshes for a Shuriken.

The quadrilaterals of the model were colored in a post-process. Topological variations
have distinctive, interesting patterns of mesh lines.

Figure 5.19: Quadrangulations of Font Interiors.

We choose Georgia (Bold, Italy) as a challenging example for its curved, asymmetric
outlines. Left: a quadrangulation with regular interiors. However, some parts such
as the left of the letter d can never be uniformly quadrangulated without irregular
vertices. Right: an alternative that favors uniform quad size at the cost of additional
irregular vertices. Bottom left: 2-coloring of the quads is possible because the meshing
is regular (quads are merged when necessary). Bottom right: a third color is necessary
for quads adjacent to the v3 and v5 vertices.
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Figure 5.20: Quadrangulating an Organic Model.

Left: A triangular Bunny mesh and a manually generated control graph based on an
initial segmentation by Variational Shape Approximation Cohen-Steiner et al. (2004).
Right: a quadrangulation. The marked region shows that the quality of the control
graph depends on the tessellation of the input mesh. Here, unnecessary corners are
caused by jagged-edge strips.
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Chapter 6

CONCLUSION AND FUTURE WORK

We conclude this thesis by outlining goals we have achieved, and outlooks for

future work.

First, we propose editing operations for quad meshes to explicitly control the lo-

cation, orientation, type, and number of irregular vertices. We analyzed what edits

are possible and what edits are impossible in a quad mesh with sharp feature edges.

Based on our theoretical analysis, we can conclude that the movement of a pair of

irregular vertices is the best possible compound editing operation. These operations

and their effects on the mesh are also discussed. We believe that these editing op-

erations are essential in applications such as quadrangular mesh optimization and

pattern design. We underline our argument by showing how our editing operations

can improve the output of important state-of-the-art remeshing algorithms. We hope

that our research can make a contribution to the communities of 3D artists, designers,

and architects. Here, quad meshes are often created manually, even in a quad-by-quad

fashion, instead of automatically generated by remeshing techniques.

Second, we present a connectivity editing framework for QD meshes that realizes

the fundamental editing operations to control the location, type, and number of

irregular elements. While the framework is useful for the manual control of QD mesh

connectivity, for QD meshes with an excessive number of irregular elements, it may

become impractical. We thus expect that a global framework that automates the

local edits, possibly driven by topological and geometric heuristics (e.g. curvature),

can be useful. Besides the given examples, we envision other uses for QD mesh

editing. In certain situations, regular vertices are very important and it is beneficial
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to convert irregular vertices to irregular faces. For example, it may be preferable to

have regular vertices at the expenses of irregular faces, like in conical meshes Liu et al.

(2006) where the definition of a conical vertex is applicable only to regular vertices

(the four adjacent faces need to be tangent to a common sphere). However, irregular

vertices can help to combine multiple patches of conical meshes. We have spoken

with multiple applied mathematicians about possible advantages of quad-dominant

meshes for solving PDEs. We would like to pursue related research questions in future

work.

Third, we present a framework to explore quad mesh topologies. The core of

our work is a systematic enumeration algorithm that can generate all possible quad-

rangular meshes inside a defined boundary with an upper limit of v3-v5 pairs. The

algorithm is orders of magnitude more efficient than previous work. The combina-

tion of topological enumeration and shape-space exploration demonstrates that mesh

topology has a powerful influence on geometry. The results illustrate that mesh topol-

ogy has an impact on the quality of the requadrangulation, especially when the mesh

lines are visible. We focus on examples from architecture, art, and design, in which

control graphs can be trivially generated. While our framework is applicable to or-

ganic models, such as the bunny, manual efforts are required to generate the control

graph. A general and fast requadrangulation method may be achievable by combining

mesh segmentation methods and our patch quadrangulation algorithm. Finally, we

did not investigate the impact of topology in simulations, e.g., FEM and higher-order

surface fitting, but we hope that our work can also have impact on these areas.
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