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Abstract—Stain normalization is a key computational method
in pathology that transforms histological stain images of one
style to another. Modern methods are mostly based on neural
image-to-image translation techniques. For very large image
inputs, which are common in practice (e.g., whole slide images
(WSIs)), the inferences are forced to run multiple times, each on
a different subset of the image, due to GPU memory constraints.
To minimize the differences between different outputs, several
modifications [1], [2] of the standard instance-normalization (IN)
layers have been proposed. Despite the reduced color variances,
visible seams remain even with these approaches, which are
disruptive to histologists when they closely examine the stitched
results. These seams are also detrimental to the performance of
some downstream tasks such as tumor classification. Hence, we
propose a novel approach to effectively remove the seams by uti-
lizing a Pix2Pix [3]-based neural network and an alpha blending-
based post-processing step. Tested on real-world medical and
natural image datasets, we found that our method performed
much better than traditional Poisson image editing-based seam
removal approaches. Our approaches qualitatively (in terms of
the visibility of the seams) and quantitatively improved the results
by prior stain normalization methods by large margins.

I. INTRODUCTION

Histologists are experts in pathology who examine human
tissues in the form of very thin layers under microscopes to
study the manifestations of disease. To assist visual inspection,
the tissues are stained by colorful chemical compounds, of
which a common choice is hematoxylin and eosin (H&E).
There are actually a large variety of histological stain im-
ages. H&E stain images alone have great color variances
due to different setups of the image acquisition processes,
such as tissue fixation duration, compositions of the H&E
stains, or scanner settings [4]. Other stain techniques include
immunohistochemistry (IHC) staining that uses enzyme or
fluorophore to highlight antibody-antigen interactions. This
large variety of styles of histological stain images makes
human inspections and downstream computational tasks (such
as tumor classification [6], [8]) more difficult to perform [5].

To mitigate the style variances problem, stain normalization
methods are developed to transform stain images of one
style to another. A typical application is to transform various
stain images to a common reference color space. Another
application is to transform images done by one kind of staining
process to one done by another. The latter is especially useful
as some stain procedures are more expensive or difficult
to conduct. Modern stain normalization methods are now
mostly deep learning-based that leverage neural image-to-

image translation / style transfer techniques [4]–[7]. Note that
the problems are mostly unpaired because paired stain image
training samples are difficult to acquire in practice (since the
staining of one tissue is irreversible).

A key challenge for neural network-based stain normal-
ization is how to process the digitized tissue samples, come
as whole slide images (WSIs), which are often of very high
resolutions. WSIs can be hundreds of times bigger than the
size the neural network can handle due to GPU memory
constraints. The standard way is to subdivide the WSIs into
smaller patches that each can be processed by the neural
network, and then stitch the individual outputs together to
form the final result. Unfortunately, the stitched results can
have glaring ”tiling artifacts” that each patches have different
hues and contrasts. Recent solutions for this issue modified
the instance normalization (IN) layers such that different
patch’s IN layers would have a common mean and variance
(”Thumbnail Instance Normalization” (TIN) [2]) or spatially
smoothly varied means and variances (”Kernelized Instance
Normalization”(KIN) [1]). These methods significantly re-
duced the color variances between the patches. However,
after close examinations (same as what histologists would do
with histological stain images), we found that visible seams
remain at the patch boundaries even after these methods were
applied. See Figure 1 for examples. These seams can be
visually disruptive to histologists’ diagnosis. Moreover, we
found that they are detrimental to a common downstream
task of histological stain images by comparing the task’s
quantitative performance on regions near the patch boundaries
and regions away from them.

We tried traditional seam removal techniques based on
Poisson image editing but found that they could not satisfac-
torily remove the seams. Therefore, we propose an effective
solution as follows. Our method first utilized a Pix2Pix [3]-
based neural network to synthesize novel image contents on
regions near the patch boundaries. As there may be new
discontinuities between original images and the synthesized
contents, we further applied an alpha-blending process with
spatially varying weights. Note that our method is a novel
application of neural image-to-image translation techniques
(such as Pix2Pix) as, to our best knowledge, there were no
existing papers that used such techniques for image seam
removal purposes.

Tested on a real-world medical dataset and a natural image
dataset (same as in KIN [1]), we found that our method worked



Fig. 1. From left to right, we show patch boundaries of stain normalization results by standard instance normalization (IN) of CycleGAN [17], Kernelized
IN [1] (with CycleGAN), and Thumbnail IN (TIN) [2], respectively, before and after our seam removal technique is applied. Red arrows point to locations
of the patch boundaries.

very well qualitatively - the seams became unnoticeable in
most cases, and quantitatively improved stain normalization
results by KIN according to Fréchet inception distances (FID).
Furthermore, we found that our method benefited a key
downstream task that take histological stain images as inputs.
Our contributions are summarized as follows:

• We identified a key shortcoming of current stain nor-
malization methods for large image inputs - namely the
visible seams between patches. We also quantitatively
demonstrated that the visible seams are detrimental to
some downstream task.

• We propose a novel method that can effectively remove
the seams and consequently improved the results of
current stain normalization methods quantitatively and
qualitatively. To our best knowledge, our method is the
first to use neural image-to-image translation techniques
for seam removal applications.

• Our method is simple and easy to implement, and can
be readily plugged into any existing patch-based stain
normalization methods for large image inputs.

II. RELATED WORK

A. Image Processing-Based Stain Normalization Methods

Recall that a major goal for stain normalization methods
was to convert stain images to a common reference color
space. Early work demonstrated that even just converting
all stain images to grayscale could be beneficial to certain
downstream tasks in medicine [9], [10]. Latter approaches
aimed for transforming to color spaces. [13] was a classic
algorithm by conducting statistical analysis in an alterna-
tive, non-RGB color space. Deconvolutional methods found
a transform function that maps ground-truth source and target
image pairs and used the function to transform unseen source
images. The source and target images were first compressed
into a small ”stain vectors” for the transform function to
deduct from. These vectors were chosen manually [14], by
conducting SVD [11], or by segmentation and clustering [12].

Latter methods attempted to match distributions of each color
channels by various approaches such as variational Bayesian
Gaussian mixture models [15] and histogram normalization of
the colormaps [16].

B. Deep Learning-Based Stain Normalization Methods

Stain normalization problems are well suited to be solved
by unpaired image-to-image translation methods. We focus
our discussion on the neural networks they used. Stain-
GAN [5] leveraged cycle-consistent adversarial networks (Cy-
cleGAN) [17] to transfer H&E stain images from one scanner
style to another (i.e., Hamamatsu Nanozoomer 2.0-HT to
Aperio Scanscope XT). [4] and [18] used GANs with disen-
tangled feature presentations (e.g., DRIT++ [20]) to perform
various stain normalization tasks. In Marini et al. [19], a
novel convolutional neural network (CNN)-based approach
was proposed to tackle highly heterogeneous images. Some
recent methods took a teacher-student model in which their
neural networks were trained on paired images synthesized
by a prior (unpaired) method. For example, Stain-Net [6]
trained a simple network of 1x1 windows to conduct color
normalization in a pixel-to-pixel manner based on paired
examples synthesized by StainGAN. It inferences much faster
than StainGAN but is less accurate (measured by FID). Lee
et. al [7] later proposed a similar U-Net-based approach that
is more accurate than Stain-Net while being slightly slower.
In KIN [1], authors used CycleGAN, Contrastive Unpaired
Translation (CUT) [21], and LSeSim [22] to synthesize virtual
immunohistochemistry (IHC) stain images (which are more
expensive to obtain in real world) from H&E stain images.
In [23], user studies showed that synthesized stain images
helped to improve the diagnosis of kidney diseases by real
pathologists.
Dealing with ultra-high resolution images. To address the
tiling artifacts of patch-based methods, in [24], the authors
proposed using a sliding window to create left-to-right smooth
transitions of the means and variances of the IN layers of
each patch’s neural network (they used CycleGAN). Later,



authors of TIN [2] proposed a simple solution of using a
shared global mean and variance for all patches. While this
approach effectively reduced inter-patch color differences and
is memory efficient, the downside is that the results may be
over/under-colorized. Recently in KIN [1], a convolution was
used to spatially smooth the the means and variances of the
patches’ IN layers. Their approach shared the same advantages
of TIN but avoided the over/under-coloring problem. Note that
all these methods aimed to reduce the differences of color
spaces of patches only, and visible seams may remain at the
patch boundaries at close examinations. Therefore, our goal is
to practically remove the seams.

C. Seam Removal / Image Stitching Methods

Trivial Laplacian smoothing-based approaches to remove
seams between two patches, e.g., averaging out colors of
adjacent pixels from different patches, would not work for
our problem (it is erroneous to assume Laplacians are zero at
patch boundaries, causing blurred lines).

In panoramic photography and remote sensing imaging,
image stitching methods [26], [27] work to combine multiple
images with overlapping fields of view. The classical methods
to compute new image contents at the overlapping regions are
Poisson image editing [25]-based, which compute new color
values by solving Poisson equations to modify the values of
one image to fit the Laplacians of another. For our problem,
the patches do not overlap so these methods could not be used
directly. Nevertheless, in Section IV-B, we tried an alternative
way to subdivide the WSIs into overlapping patches so that
Poisson-based methods can be used. We found the results to
be worse than ours.

III. METHOD

Our method has two stages - a Pix2Pix-based step to
largely remove the seams (Section III-A) followed by an
alpha blending-based step (Section III-B) to mitigate the slight
discontinuities caused by the previous step. We go through the
details next.

A. Pix2Pix-Based Seam Removal

We begin with notations. We assume the stain normalization
task transforms a WSI image of style Staina to another
style Stainb using an unpaired style transfer method such
as CycleGAN [17], CUT [21], or LSeSim [22]. We denote
the method as Method. In practice, Method is run separately
on each subdivided patch of the whole WSI and the inference
outputs are stitched together to form the final result. We denote
the input WSI as WSIa and the stitched result as WSIb. Note
that the mechanisms in KIN [1] or TIN [2] may be used to
coordinate the statistics parameters of the IN layers of each
Method inference to reduce the color differences. Still, visible
seams are likely to remain at the patch boundaries.

Our goal is to prepare training data to train a paired image-
to-image translation method (we used Pix2Pix [3] and found it
to work quite well) that will be used to run on regions of WSIb
near the patch boundaries, such that the synthesized image

content would be similar to the original image but with the
seams removed. For this goal, the training data for the Pix2Pix
should be two versions of regions of WSIb near the patch
boundaries, one with the seams (source style) and one without
the seams (target style). How to generate such training data?
We come out the idea of running Method again on WSIa
but with a horizontally and vertically shifted patch subdivision
scheme such that the original patch boundaries would fall into
the new patches’ interiors. We denote the new result WSIb+.
We can then prepare the training data as the quadrangulation
(i.e., subdivision into rectangles) of regions of WSIb near the
patch boundaries and their counterparts in WSIb+ at the same
locations. Namely, the former are the source-style images with
seams and the latter are the target-style images without seams.
We explain the technical details in Figure 2.

Finally, after the Pix2Pix is trained, we run it on each
subdivided rectangle of the regions near the patch boundaries
in WSIb and replace them by the inference outputs.

B. Alpha Blending Step

Recall that the Pix2Pix is trained on pairs of images which
are subsets of stain normalization results by a particular
Method that one overlaps patch boundaries and another
doesn’t. Therefore, in principle the paired images should differ
only by the existence of the visible seams. In practice, the
trained Pix2Pix may still make slight changes to the whole
image input. This let to new visible discontinuities between
the regions processed by Pix2Pix and the rest. To minimize the
discontinuity, we developed a simple alpha-blending strategy
to blend the the Pix2Pix outputs and the original WSIb con-
tents by assigning a weight to Pix2Pix-generated content that
is inversely proportional to the L1 distance to the boundaries of
the Pix2Pix-applied regions. The weighting scheme is shown
in Figure 3.

IV. RESULTS

We tested our method on a Linux computer with AMD
Ryzen 5 5600g CPU, NVIDIA GeForce RTX 3090 Ti GPU,
and 24GB rams. We used the default settings (Adam optimizer,
200 epochs) to train the Pix2Pix. For a typical input WSI of
7895 pixels by 5586 pixels, we collected 722 paired images
(550 long rectangles, 126 squares, and 46 small rectangles) as
training examples to train the Pix2Pix. The training took 5000
seconds for such a WSI. The inferences of Pix2Pix to generate
the new contents for regions near the patch boundaries took
about 165 seconds in total. The computational cost of the
alpha-blending step is neglectable. Next, we describe the
datasets we tested on.

A. Datasets

Automatic Non-rigid Histological Image Registration
(ANHIR) challenge [28]. This dataset consists of high-
resolution whole slide images (WSIs) containing multiple
types of tissue samples, including lesions, lung lobes, breast
tissues, colon adenocarcinoma, etc. These images are orga-
nized in sets of consecutive tissue slices that are stained using



Fig. 2. (a to c) shows the original patch-based stain normalization pipeline to transform a given WSI (a) to another style (b) by running a style transfer
method (e.g., CycleGAN, CUT, or LSeSim) on each of the subdivided patch. (c) shows a close-up view of the patches and the quadrangulation of the regions
near the patch boundaries. The regions are defined by a ”dilation size” along the patch boundaries. By default we use a dilation size of 20 pixels for patches
of 512 by 512 pixels (we conducted ablation studies of other sizes in Section IV-F). The quadrangulation turns the regions into long rectangles in either
horizontal or vertical directions (along the patch edges), squares (at the 4-way junctions between patches), and small vertical or horizontal rectangles (at the
WSI boundaries). Note that all these quadrangulated polygons overlap some original patch boundaries. The long rectangles are further cut into two for the
reason we see next. (d to f) shows a second run of the patch-based stain normalization pipeline but with a new patch subdivision scheme which is the original
scheme shifted horizontally and vertically by half of the patch size. Now, for every quadrangulated polygon in the original stain normalization result, we can
find a counterpart in the second run’s result at the same location. (g) We collect the pairs of images to train a Pix2Pix.

Fig. 3. For each of the three types of quadrangulated polygons, we show the
weightings of the original image contents and the Pix2Pix outputs in blue and
red, respectively.

various dyes, such as H&E, Ki-67, ER/PR, CD4/CD8/CD68,
among others. Following the testing procedures in KIN [1],
we selected lung lesion WSIs as our dataset. There are
two H&E stain images with resolutions of 8899x7328 and
7895x5586 pixels and two corresponding Ki-67 stain images
with resolutions of 8915x7336 and 7898x5573 pixels in this
category. Note that the H&E and corresponding Ki-67 images
are not pixel-to-pixel matched. For both pairs of H&E / Ki-67
images, we ran existing stain normalization pipelines (i.e., IN,

KIN, TIN) to get a synthetic Ki-67 image. We then trained
a Pix2Pix on the first image pair only and tested the trained
Pix2Pix on the second (for quantitative comparisons) and both
(for qualitative observations).
Kyoto summer2autumn dataset. To verify the effectiveness
of our method, we utilized an additional dataset of natural
images provided by the authors of KIN [1]. The dataset
consists of two unpaired sets of high resolution (3456x5184
pixels) images, namely 17 and 20 photos taken in Kyoto
during the summer and autumn seasons, respectively. The stain
normalization pipeline in KIN was then used to transfer the
summer images to winter. For our experiments, we split the
dataset into a testing set of 4 summer images and the rest as
the training set (to train the Pix2Pix).

B. Poisson Image Editing-Based Method

For comparison, we implemented a Poisson image edit-
ing [25]-based approach for seam removal. As the traditional
method worked on overlapping areas only (recall that it
optimizes for new pixel values that are based on the values of
the first image but shall have the Laplacians of the second
image), we run the stain normalization pipeline again but
with a shifted patch subdivision scheme so that the original



ANHIR CycleGAN ANHIR CUT ANHIR LSeSim
FID ↓ Corr. ↑ FID ↓ Corr. ↑ FID ↓ Corr. ↑

IN 89.71 0.9814 76.09 0.9931 87.46 0.9988
IN + PB 97.41 0.9807 99.73 0.9900 89.26 0.9871
IN + SR 85.09 0.9833 73.74 0.9932 86.72 0.9988

KIN 123.50 0.9914 102.12 0.9969 93.71 0.9990
KIN + PB 123.49 0.9905 103.25 0.9971 103.25 0.9984
KIN + SR 114.83 0.9916 97.18 0.9971 90.53 0.9989

TIN 200.48 0.9865 174.62 0.9989 228.52 0.9891
TIN + SR 208.12 0.9864 177.63 0.9989 225.80 0.989

TABLE I
QUANTITATIVE RESULTS FOR THE ANHIR DATASET USING VARIOUS

STYLE TRANSFER METHODS AND WITH THE STANDARD IN LAYERS (IN),
KIN [1], OR TIN [2], TO SYNCHRONIZE THE NEURAL NETWORK

INFERENCES FOR EACH PATCHES. +PB MEANS USING POISSON BLENDING
AND +SR MEANS USING OUR METHOD FOR SEAM REMOVAL

Kyoto CycleGAN FID↓
IN 152.17

IN + SR 150.33
KIN 177.48

KIN + SR 176.61
TIN 192.37

TIN + SR 184.64

TABLE II
QUANTITATIVE RESULTS ON THE KYOTO DATASET.

patches and the new patches are overlapping. In this way, the
standard Poisson-based blending scheme can be applied on
the overlapping areas. As reported in the next sub-sections,
the results are worse than our method.

C. Quantitative Comparisons

We quantitatively evaluated our method’s impact on the
quality of patch-based stain normalization results with the
standard IN layers, the kernelized IN layers in KIN [1], and the
mean/variance-averaged IN layers in TIN [2]. Following the
experiment designs in previous work (TIN and KIN), we chose
Fréchet Inception Distance (FID) and histogram correlation
for testing. These are commonly used metrics to evaluate the
performance of generative models by measuring the similarity
between two sets of images (e.g., gt and synthesized) by
either utilizing a pre-trained neural network (Inception) or
by comparing the distributions of histograms. To sum up,
our method significantly improved the results by standard
IN layers and the kernelized IN layers. Our method did not
quantitatively affect the results by TIN much. This may be
because TIN introduced significant blurring artifacts to the
original style transfer results, making the Pix2Pix harder to
train. The results are shown in Table II. Histogram correlations
could not be calculated on the Kyoto dataset because the
source and target images have no correspondences.

D. Qualitative Comparisons

In Figure 4 and Figure 5, we show visual comparisons of
regions near the patch boundaries before and after our seam
removal method, and by the Poisson blending-based (PB)
method, for stain normalization results by various kinds of
pipelines (IN, KIN, TIN) based on three different style transfer
techniques (CycleGAN, CUT, and LSeSim). Our findings are

Interior Boundary Boundary + SR
Accuracy: 0.813±0.006 0.803±0.007 0.806±0.007

TABLE III
PERFORMANCE OF A TUMOR CLASSIFICATION METHOD [6] ON REGIONS
OF STAIN NORMALIZATION RESULTS (IN+CYCLEGAN) AWAY FROM THE

PATCH BOUNDARIES (”INTERIOR”), NEAR THE PATCH BOUNDARIES
(”BOUNDARY”), AND BOUNDARY REGIONS AFTER OUR SEAM REMOVAL

METHOD WAS APPLIED.

three folds. First, we found that visible seams really are a
problem for all kinds of pipelines we tested. Second, we
found our method worked effectively to remove the seams
and meanwhile did not introduce noticeable discontinuities
between processed regions and the rest. Third, we found the
Poisson-based method were less effective at removing the
seams. In Figure 6, we show results on the Kyoto dataset.

E. Downstream Task Experiment

Following the testing procedures in StainNet [6], we lever-
aged the public Camelyon16 dataset [8] to train and test a
tumor classification neural network. We used the classification
neural network trained in StainNet (using a SqueezeNet [29],
which was trained on 40000 256x256 patches subtracted from
170 WSIs from the Radboud University Medical Center and
tested on 10000 256x256 patches subtracted from 50 WSIs
from the University Medical Center Utrecht. They labeled the
patches as normal or abnormal (i.e., containing tumors) for
training and testing. We further separate the testing patches
into ”interior” and ”boundary” (i.e., touching the boundaries
of the 512x512 subdivided patches to run stain normalization)
ones. In other words, the boundary patches would contain
visible seams while the interior ones would not. We then tested
the classification method on whole-WSI stain normalization
results (generated using per-patch CycleGANs). Our findings
are two folds. First, we found that the classification neural
network did performed worse on the boundary patches then
on the interior ones. This indicated that the visible seams
are indeed detrimental to the classification neural network.
Second, we found that the classification performance got
slightly improved after our seam removal method was applied.
See Table III for testing results. In Figure 7, we show examples
of normal and abnormal (have tumors) patches and their seam-
removal results in stain normalization results.

F. Ablation Studies

In Table IV (a-c), we show results of using different sizes
(dilation width) for the regions processed by Pix2Pix. Note
that by default we use a dilation size of 20 (width is 20+20).
We found that using a smaller size (10) would led to less
effective seam removal, while using sizes larger than 20 led
to little differences but came with a higher computational cost.
In Table IV (d), we show results of only doing the Pix2Pix
step (skip the alpha-blending step). We found that there are
slight discontinuities at the boundaries of regions processed
by Pix2Pix and this is reflected in the worse performance. In
Figure 8, we show qualitative examples for ablation studies.



Fig. 4. Qualitative results for the ANHIR dataset. SR means our seam removal method. PB means Poisson blending.

FID↓ Corr.↑
No SR 89.71 0.9814
(a) SR (width 10+10) 92.40 0.9822
(b) SR (width 20+20) 85.09 0.9833
(c) SR (width 40+40) 85.26 0.9846
(d) SR (Pix2Pix only) 87.66 0.9839

TABLE IV
ABLATION-STUDY RESULTS. WE SHOW PERFORMANCES OF USING

DIFFERENT SIZES FOR THE REGIONS PROCESSED BY PIX2PIX (A-C) AND
PERFORMANCE OF DOING ONLY THE PIX2PIX STEP (D).

V. CONCLUSION

To sum up, our method can be understood as a modern
take of the traditional Poisson image editing-based approach to
blend color contents of overlapping images: instead of relying
on solving Laplacian or gradient-based optimization problems,
we leveraged powerful image-to-image translation neural net-
works (e.g., Pix2Pix) to learn the non-trivial conversion of
regions near visible seams to the seamless counterparts. This
is also a novel use of such neural techniques for seam removal
applications. We found our method worked well qualitatively

- not only the seams were removed, but also no additional
discontinuities were introduced between the processed parts
and the original images thanks to the alpha-blending post-
processing step. The quantitative benefits of our method are
verified in two ways. First, the FID and histogram correlation
of stain normalization results both got improved after being
processed by our method. Second, for a key downstream task
(tumor classification), the worse performance on regions near
patch boundaries (compared to the other parts) got improved
after our method. We consider the main disadvantage to be the
relatively high inference costs of the Pix2Pix. This is because
we ran Pix2Pix on each of the rectangles separately. For future
work, we would like to try to improve the performance by
minimizing the numbers of inference calls.
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