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Abstract—We propose a novel hematoxylin and eosin (H&E)
stain normalization method based on a modified U-Net neural
network architecture. Unlike previous deep-learning methods
that were often based on generative adversarial networks (GANs),
we take a teacher-student approach and use paired datasets
generated by a trained CycleGAN to train a U-Net to perform
the stain normalization task. Through experiments, we compared
our method to two recent competing methods, CycleGAN and
StainNet, a lightweight approach also based on the teacher-
student model. We found that our method is faster and can
process larger images with better quality compared to CycleGAN.
We also compared to StainNet and found that our method
delivered quantitatively and qualitatively better results.

I. INTRODUCTION

Histopathology is the examination of human tissues under a

microscope to study the manifestation of diseases. The tissues

under study come from a biopsy or surgical procedure, then are

processed and cut into very thin layers, and then stained and

examined by pathologists under microscopes to characterize

the details of the cells in the tissue. Computer-aided diagno-

sis (CAD) systems to assist the analysis are also common.

Conventionally, the tissue is stained with hematoxylin and

eosin (H&E) [6]. However, the stain images can have strong

variances (in terms of colors, illumination, image qualities,

etc.) due to differences in the image acquisition processes,

such as tissue fixation duration, compositions of the H&E-

stains, or scanner settings [1]. The strong variances can hinder

downstream tasks such as classification. In histopathology,

stain normalization can mitigate the variances problem by

transforming a stain image done by one kind of staining

process to one done by another.

Deep learning (DL)-based methods for stain normalization

are gaining popularity in recent years, showing fast improving

performances when compared to traditional image processing-

based approaches [1], [2]. In general, they conduct style-

transfer tasks using neural networks such as Generative Ad-

versarial Networks (GANs). Common choices for the network

structures include: 1) cycle-consistent adversarial networks

(”CycleGANs” [3] in short), 2) GANs with disentangled

feature presentations (e.g., DRIT++ [4]), and 3) multi-task

convolutional neural networks (CNNs) [20].

Although deep learning-based methods performed well in

transferring the colors, there are still some limitations. GAN-

based methods have complicated neural network structures.

Therefore, they are more computationally expensive to train

and inference. They also impose ”patch consistency” problems

when the input image is too large and needs to be partitioned

into smaller patches before they can processed by neural

networks. On the contrary, StainNet [5] proposed a much

simpler fully 1x1 convolutional network to transform colors

in a pixel-to-pixel manner. StainNet’s results are slightly less

accurate than GAN-based methods (measured by GAN-related

metrics such as FID (Fréchet Inception Distance)), but is

much faster then CycleGAN-based approaches and has more

consistent results across patches because this model learns

pixel-wise property rather than the pixel distributions that were

learned for CycleGAN.

To address the shortcomings of existing methods, we pro-

pose a novel stain normalization method that is based on a

lightweight U-Net [7] neural network architecture. We trained

our network on a bidirectionally paired dataset produced by

CycleGAN. Quantitative results show that our network works

well on color transfers between two types of H&E stains

and can achieve better cycle consistency than the standard

CycleGAN-based method. Besides, our output images obtain

better FID scores than StainNet’s results. Qualitative results

show that our normalized images look as similar to real ones as

CycleGAN’s results. In contrast, StainNet’s results have slight

but notable color shifts. Same as StainNet, our results are more

consistent across partitioned patches than CycleGAN’s.

II. RELATED WORK

A. Image Processing-based Methods

Even simply converting all stain images to grayscale may

be beneficial to certain downstream tasks in medicine [8], [9].

More modern approaches seek to retain the color information.

Deconvolutional methods find a transform function between

ground-truth source and target image pairs and use the function

to transform unseen source images. Usually, the source and

target images are first compressed into small ”stain vectors”

for the transform function to deduct from. These vectors are

chosen manually [10] or by statistical algorithms such as

Singular Value Decomposition (SVD) [11] or segmentation

and clustering [12]. Template color matching algorithms [13]

attempt to match distributions of each color channels between

source and target images by various approaches such as

variational Bayesian Gaussian mixture models (GMMs) [14]

and histogram normalization of the colormaps [15].
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B. Deep Learning-based Methods

Many stain normalization methods are based on generative

adversarial networks (GANs). In short, GANs are suitable

for conducting image-to-image translation [17] tasks in which

images of one group (i.e., a ”style”) can be transformed into

one of another group. Note that GAN-based style transfer is

a kind of unsupervised learning, meaning that images in the

two groups don’t need to be paired. This is a major advantage

over many traditional methods in which paired images are

needed. StainGAN [18] trained a cycle-consistent adversarial

network (”CycleGAN” [3]) to transfer H&E stain images from

one scanner style to another (i.e., Hamamatsu Nanozoomer

2.0-HT to Aperio Scanscope XT). Similarly, Runz et al. [19]

investigated the potential and limitations of using CycleGAN

for transfering H&E stain images. [1] and [2] used GANs with

disentangled feature presentations (e.g., DRIT++ [4]) to solve

the stain normalization problem. Marini et al. [20] proposed

a novel convolutional neural network (CNN)-based approach

that aims to tackle highly heterogeneous images.

In StainNet [5], the authors proposed a lightweight fully

1x1 convolutional network to conduct color normalization in a

pixel-to-pixel manner. Their method is much faster than GAN-

based methods but performed slightly worse measured by

GAN-related metrics such as FID (Fréchet Inception Distance)

scores. They took a teacher-student model in which their

neural network is trained on paired images synthesized by

StainGAN. Our U-Net-based method is most similar to theirs.

III. METHOD

A. Dataset

The HE-Staining Variation (HEV) dataset [19], produced

by the Institute of Pathology at Heidelberg University, was

used to train and evaluate our model. The dataset offers

serial sections of a follicular thyroid carcinoma, stained with

different HE-staining protocols. We work on two styles of

images. The first is done by a standard H&E stain process (of

the Institute of Pathology at Heidelberg University), denoted as

”HE”. The second are images intentionally stained too-long,

denoted as ”Long HE”. Note that the dataset is unpaired -

meaning that we don’t have the exact Long HE counterpart of

a HE image and vice versa. Each histopathological whole-slide

image (WSI) is preprocessed into tiles of 256×256 pixels. We

use 10,000 tiles of each style for training CycleGAN, 10,000

tiles of each style for inferencing CycleGAN to generate the

training data for StainNet and U-Net, and 5000 HE image tiles

for evaluating the performance of methods.

B. Method Overview

An overview of our method is shown in Fig. 1. We first

trained a CycleGAN using the HE and Long HE images in

the HEV dataset. Next, inspired by the teacher-student model

in deep learning, we used CycleGAN to generate synthetic

(fake) Long HE images from real HE images and vice versa.

In the end, we have paired HE and Long HE images to train

a U-Net neural network. As shown in top of Fig. 1, we also

enlarged our HE to Long HE training dataset by combining

Fig. 1. Overview of our method. TheGx→y andGy→x denote the generators
of a trained CycleGAN that can synthesize a ”fake” Long HE image from a
real HE image and vice versa. We use the generated HE and Long HE image
pairs, and the image pairs from the original HEV dataset (not shown here),
to train a modified U-Net neural network that can be used to synthesize Long
HE images from any HE images.

real and fake HE images as input and combining real and

fake Long HE images as ground truth to improve quantitative

performance of our model.

C. Neural Network Architecture

As shown in Fig. 2, our U-Net architecture is symmetric

and consists of a contraction and an expansion sections. The

contraction section consists of two contraction blocks. Each

contraction block takes an input and passes it to two 3x3

convolution layers followed by a 2x2 max pooling. We double

the number of feature channels and halve the size of feature

maps after each contraction block. The expansion section also

consists of two expansion blocks. Each block passes the input

to two 3x3 CNN layers followed by a 2x2 up convolution

layer that halves the number of feature channels. We combines

the feature and spatial information through a sequence of up-

convolutions and concatenations with high-resolution features

from the corresponding contraction block. At the final layer

a 1x1 convolution layer is used to map each 64-component

feature vector to a 3-channel vector.

D. Implementation

We use CycleGAN to generate the training dataset for both

U-Net and StainNet. The CycleGAN model was trained using

Adam optimizer for 60 epochs. For U-Net, the model was

trained with SGD optimizer for 300 epochs, and we use cosine

annealing scheduler to decrease the learning rate from 0.01 to

0. The L1 loss function is used to minimize the error which

is the average of the all the absolute differences between the

output image and the ground truth. We use a NVIDIA RTX

3060 Ti machine.
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Fig. 2. Our U-Net neural network architecture.

TABLE I
Times (in seconds) to generate 5000 256x256 Long HE stain images using

CycleGAN, StainNet, and our U-Net based method.

CycleGAN StainNet Our
Time(s) 271.18 123.22 205.05

IV. RESULTS AND ANALYSIS

We first compare the inference speeds of our method versus

a CycleGAN-based stain normalization method and StainNet.

As shown in Table I, our method is 24.39% faster than

CycleGAN, but is 66.4% slower than StainNet.

To quantitatively evaluate our method, we measure the

distances between distributions of our generated images and

real images using Fréchet Inception Distance (FID), which is

a standard way to evaluate the quality of results of generative

models. In addition, to measure cycle consistency, we transfer

HE stain images to the Long HE domain and transfer them

back, and then calculate the similarity between each original

HE image and its reconstructed one. Following the procedures

in the previous papers [18], [19], we use Structural Similarity

Index Measure (SSIM) and Peak Signal to Noise Ratio (PSNR)

to compare images. These metrics are explained as follows:

Fréchet Inception Distance (FID) is the squared Wasser-

stein distance between two multidimensional Gaussian distri-

butions, N(μ,Σ) and N(μw,Σw):

FID = ||μ− μw||22 + tr(Σ + Σw − 2(Σ
1
2 · Σw · Σ 1

2 )
1
2 ),

where μ and Σ, and μw and Σw, are the mean vector and

covariance matrix of some neural network internal representa-

tions of the generated images and real images, respectively. tr
is the trace of a matrix. The Inception v3 [21] trained on the

ImageNet is commonly used as the internal representation.

Structural Similarity Index (SSIM) is used to measure the
similarity between two images. It is the mean of the following

score calculated over many windows, x and y, of the given

image pair:

SSIM(x, y) =
(2μxμy + c1) (σxy + c2)

(
μ2
x + μ2

y + c1
) (

σ2
x + σ2

y + c2
) ,

where μx and μy , and σ2
x and σ2

y , are the average and variance

of x and y, respectively. σxy is the covariance of x and y. The
range of SSIM is from 0 (least similar) to 1 (most similar).

TABLE II
FID scores between real Long HE images and generated Long HE images.

CycleGAN StainNet Our
FID 16.97 24.83 18.07

TABLE III
Cycle Consistency scores between real HE images and reconstructed HE

images.

CycleGAN StainNet Our
SSIM 0.9554 0.9637 0.9672
PSNR 36.07 34.37 36.27

Peak Signal to Noise Ratio(PSNR) also measures the

similarity of an original image versus a generated image:

PSNR = 20log10
MAXf√
(MSE)

,

where MAXf is the maximal value of the original image and

MSE is the Mean Squared Error of the two images. Higher

PSNR value mean more similarity and vice versa.

In Table II, we show the FID scores between real Long HE

images and fake Long HE images generated by the three meth-

ods. As expected, our method’s FID score is slightly worse

(higher) than CycleGAN’s because our method is trained on

the data generated by CycleGAN. However, our method has

significantly better FID score than StainNet (also a teacher-

student model), meaning that our results are statistically more

similar to ground truth. In Table III, we show cycle consistency

scores of the three methods. Our method outperforms other

two methods in terms of SSIM and PSNR scores, which

shows that our network retains the source image information

better. We illustrate qualitative comparison of the methods in

Fig. 3 left. We can see that fake Long HE images generated

by CycleGAN and our method are more visually similar to

real ones than StainNet’s results (which have some color

shifts). In Fig. 3 right, we show that our method, similar

to StainNet, maintains better consistency between different

partitioned patches of the input image than CycleGAN.

V. CONCLUSION

In this paper, we explore the novel idea of using U-Net to

perform H&E stain normalization tasks. Through experiments,

we show that our method is significantly faster than a com-

peting CycleGAN-based approach while still delivering similar

results measured quantitatively and qualitatively. Compared to

StainNet, our method is slower but delivers results with better

qualities. For future work, we aim to improve the speed of our

method while still maintaining the qualities and investigate

the improvement of the downstream tasks (such as cancer

cell detection) by this faster stain normalization towards larger

digital pathological images. .
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Fig. 3. Left: Qualitative results of various stain normalization methods, which transfer from HE to Long HE. The right column shows some real Long HE.
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